eISSN: 1731-2531
ISSN: 1642-5758
Anaesthesiology Intensive Therapy
Current issue Archive Manuscripts accepted About the journal Supplements Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2024
vol. 56
 
Share:
Share:
Original article

Interest in antibiotic pharmacokinetic modelling in the context of optimising dosing and reducing resistance: bibliometric analysis

Arkadiusz Adamiszak
1, 2
,
Alicja Bartkowska-Śniatkowska
3
,
Edmund Grześkowiak
1
,
Agnieszka Bienert
1

  1. Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poland
  2. Doctoral School, Poznan University of Medical Sciences, Poland
  3. Department of Paediatric Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poland
Anaesthesiol Intensive Ther 2024; 56, 2: 129–140
Online publish date: 2024/07/23
Article file
- interest.pdf  [0.74 MB]
Get citation
 
PlumX metrics:
 
1. Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 2020; 88: 26-40. doi: https://doi.org/10.1007/S00239-019-09914-3.
2. Morrison L, Zembower TR. Antimicrobial resistance. Gastrointest Endosc Clin N Am 2020; 30: 619-635. doi: https://doi.org/10.1016/J.GIEC.2020.06.004.
3. de Velde F, Mouton JW, de Winter BCM, van Gelder T, Koch BCP. Clinical applications of population pharmacokinetic models of anti­biotics: challenges and perspectives. Pharmacol Res 2018; 134: 280-288. doi: https://doi.org/10.1016/j.phrs.2018.07.005.
4. European Medicines Agency (EMA). Reflection paper on the use of extrapolation in the 4 development of medicines for paediatrics. 2017. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/adopted-reflection-paper-use-extrapolation-development-medicines-paediatrics-revision-1_en.pdf (Accessed: 25.05.2023).
5. Marsot A. Population pharmacokinetic models of first choice beta-lactam antibiotics for severe infections treatment: what antibiotic regimen to prescribe in children? J Pharm Pharm Sci 2020; 23: 470-485. doi: https://doi.org/10.18433/JPPS30927.
6. Roberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 2011; 66: 227-231. doi: https://doi.org/10.1093/JAC/DKQ449.
7. Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A, et al. Conserving antibiotics for the future: New ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates 2011; 14: 107-117. doi: https://doi.org/10.1016/J.DRUP.2011.02.005.
8. Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients – guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique – SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation – SFAR). Critical Care 2019; 23: 1-20. doi: https://doi.org/10.1186/S13054-019-2378-9.
9. Lodise TP, Lomaestro BM, Drusano GL. Application of antimicrobial pharmacodynamic concepts into clinical practice: Focus on β-lactam antibiotics – insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2006; 26: 1320-1332. doi: https://doi.org/10.1592/phco.26.9.1320.
10. Sime FB, Hahn U, Warner MS, Tiong IS, Roberts MS, Lipman J, et al. Using population pharmacokinetic modeling and monte carlo simulations to determine whether standard doses of piperacillin in piperacillin-tazobactam regimens are adequate for the management of febrile neutropenia. Antimicrob Agents Chemother 2017; 61: 1-13. doi: https://doi.org/10.1128/AAC.00311-17.
11. Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 2015; 21: 319-329. doi: https://doi.org/10.1016/j.jiac.2015.02.001.
12. Thomson KM, Dyer C, Liu F, Sands K, Portal E, Carvalho MJ, et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect Dis 2021; 21: 1677. doi: https://doi.org/10.1016/S1473-3099(21)00050-5.
13. Romanelli JP, Gonçalves MCP, de Abreu Pestana LF, Soares JAH, Boschi RS, Andrade DF. Four challenges when conducting bibliometric reviews and how to deal with them. Environ Sci Pollution Res 2021; 28: 60448–60458. doi: https://doi.org/10.1007/S11356-021-16420-X/FIGURES/3.
14. Thompson DF, Walker CK. A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy 2015; 35: 551-559. doi: https://doi.org/10.1002/PHAR.1586.
15. Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 2017; 11: 959-975. doi: https://doi.org/10.1016/J.JOI.2017.08.007.
16. Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 2006; 57: 359-377. doi: https://doi.org/10.1002/ASI.20317.
17. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84: 523-538. doi: https://doi.org/10.1007/S11192-009-0146-3.
18. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37: 840-851. doi: https://doi.org/10.1097/CCM.0B013E3181961BFF.
19. Roberts JA, Kirkpatrick CMJ, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 2010; 35: 156-163. doi: https://doi.org/10.1016/J.IJANTIMICAG.2009.10.008.
20. Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 2010; 36: 332-339. doi: https://doi.org/10.1016/J.IJANTIMICAG.2010.06.008.
21. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55: 3284-3294. doi: https://doi.org/10.1128/AAC.01733-10/ASSET/27BFBDC6-214E-4720-9D9D-372D77B2D599/ASSETS/GRAPHIC/ZAC9991000520005.JPEG.
22. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin Infect Dis 2014; 58: 1072-1083. doi: https://doi.org/10.1093/CID/CIU027.
23. Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 2013; 57: 524-531. doi: https://doi.org/10.1093/CID/CIT334.
24. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 2014; 14: 498-509. doi: https://doi.org/10.1016/S1473-3099(14)70036-2.
25. Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent β-lactam infusion in severe sepsis: a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 2016; 194: 681-691. doi: https://doi.org/10.1164/RCCM.201601-0024OC/SUPPL_FILE/DISCLOSURES.PDF.
26. Roberts JA, Kirkpatrick CMJ, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64: 142-150. doi: https://doi.org/10.1093/JAC/DKP139.
27. Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising therapy to minimize bacterial multidrug resistance. Drugs 2018; 78: 621-641. doi: https://doi.org/10.1007/s40265-018-0891-9.
28. Deak D, Outterson K, Powers JH, Kesselheim AS. Progress in the fight against multidrug-resistant bacteria? A review of U.S. Food and Drug Administration-approved antibiotics, 2010-2015. Ann Intern Med 2016; 165: 363-372. doi: https://doi.org/10.7326/M16-0291.
29. Vinks AA. The application of population pharmacokinetic modeling to individualized antibiotic therapy. Int J Antimicrob Agents 2002; 19: 313-322. doi: https://doi.org/10.1016/S0924-8579(02)00023-7.
30. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019; 39: 10-39. doi: https://doi.org/10.1002/PHAR.2209.
31. Roelofsen EE, Abdulla A, Muller AE, Endeman H, Gommers D, Dijkstra A, et al. Dose optimization of cefotaxime as pre-emptive treatment in critically ill adult patients: a population pharmacokinetic study. Br J Clin Pharmacol 2022. doi: https://doi.org/10.1111/BCP.15487.
32. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073. doi: https://doi.org/10.1128/AAC.37.5.1073.
33. Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care 2011; 15. doi: https://doi.org/10.1186/CC10441.
34. Shekar K, Fraser JF, Smith MT, Roberts JA. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care 2012; 27: 741.e9-741.e18. doi: https://doi.org/10.1016/J.JCRC.2012.02.013.
35. Swartling M, Smekal AK, Furebring M, Lipcsey M, Jönsson S, Nielsen EI. Population pharmacokinetics of cefotaxime in intensive care patients. Eur J Clin Pharmacol 2022; 78: 251. doi: https://doi.org/10.1007/S00228-021-03218-6.
36. Hartman SJF, Upadhyay PJ, Mathôt RAA, Van Der Flier M, Schreu-der MF, Brüggemann RJ, et al. Population pharmacokinetics of intravenous cefotaxime indicates that higher doses are required for critically ill children. J Antimicrob Chemother 2022; 77: 1725-1732. doi: https://doi.org/10.1093/JAC/DKAC095.
37. Ferreira A, Martins H, Oliveira JC, Lapa R, Vale N. Pbpk modeling and simulation of antibiotics amikacin, gentamicin, tobramycin, and vancomycin used in hospital practice. Life 2021; 11. doi: https://doi.org/10.3390/LIFE11111130/S1.
38. Kadambari S, Heath PT, Sharland M, Lewis S, Nichols A, Turner MA. Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units. Journal of Antimicrobial Chemotherapy 2011; 66: 2647-2650. doi: https://doi.org/10.1093/JAC/DKR351.
39. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 1998; 279: 125-129. doi: https://doi.org/10.1001/JAMA.279.2.125.
40. Gilks WR, Best NG, Tan KKC. Adaptive rejection metropolis sampling within Gibbs sampling. Appl Stat 1995; 44: 455. doi: https://doi.org/10.2307/2986138.
41. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45: 2793-2797. doi: https://doi.org/10.1128/AAC.45.10.2793-2797.2001.
42. Mouton JW, Den Hollander JG. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1994; 38: 931-936. doi: https://doi.org/10.1128/AAC.38.5.931.
43. Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy 2007; 27: 1081-1091. doi: https://doi.org/10.1592/PHCO.27.8.1081.
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.