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Abstract 

Objective: To investigate the curative effect of fenofibrate on rats with experimental autoimmune 
myocarditis (EAM) and its immunological mechanism. 

Material and methods: Twenty-four rats were equally randomised into three groups: an EAM 
group, fenofibrate group, and control group, then a subcutaneous injection of purified pig cardiac my-
osin was given to the EAM group rats and the fenofibrate group, while equivalent normal saline (NS) 
was given to the control group. After that, the fenofibrate group received fenofibrate by gavage (100 mg/
kg/d) and equivalent NS was given to the other groups, lasting for 17 days. Then the rats were sacrificed 
in order to take heart tissues; HE staining and qRT-PCR method was used to assess the severity of heart 
failure and mRNA level of cytokines; NK-κB protein content was analyzed by Western-blot. Healthy rat 
spleen tissue was prepared for splenocyte suspension. Subsequently, splenocytes were administrated 
similarly to the test in vivo for detecting cytokine mRNA levels. 

Results: Compared with the control group, heart weight in EAM group was heavier than in the other 
groups (p < 0.05), and there was severe inflammatory cell infiltration in heart tissue of the EAM group. Th17 
cell-related cytokines mRNA levels in the EAM group/induction group were evidently higher than in other 
groups (p < 0.05); FOX-p3 mRNA level in the EAM group/induction group was lower than other groups, 
mRNA levels of IL-10 and FOX-p3 in the fenofibrate group were higher than in the EAM group/induction group  
(p < 0.05). Fenofibrate could significantly inhibit the up-regulation of NF-κB protein in EAM rats (p < 0.05). 

Conclusions: By inhibiting the development of Th17 cells and promoting the differentiation of 
Tregs, fenofibrate alleviated Treg/Th17 disorder and inhibited inflammation in rats with EAM, thus 
improving the prognosis.
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Introduction
Myocarditis is inflammation of the myocardium, often 

caused by infection of Coxsackie virus, characterise by in-
flammatory infiltration associated with degeneration and 
necrosis of myocardial cells. In the course of myocarditis, 
inflammatory cytokines activate the immune system of 
patients or experimental animals through direct cytotox-
icity and via activation of lymphocyte function. Studies 
have shown that T cells, especially T helper cells, play an 
important role in the development of myocarditis and in-
flammation [1]. T helper type 17 (Th17) cells are a subset 
of CD4+ T helper cells, producing cytokines including in-
terleukin 17 (IL-17) [2], IL-6, IL-21, IL-22, IL-26, tumour 
necrosis factor, and granulocyte-macrophage colony-stim-
ulating factor (GM-CSF). It has been proven that Th17 

cells play important role in development of autoimmune 
diseases like rheumatoid arthritis, systemic lupus erythe-
matosus, and multiple sclerosis [3, 4]. Recently it has been 
reported that “classical” Th17 cells, which mainly produce 
IL-17, are not pathogenic, while GM-CSF is critical for 
the pathogenicity of Th17 cells [5, 6]. Granulocyte-macro-
phage colony-stimulating factor induces the differentiation 
of macrophages and increases the production of proinflam-
matory cytokines such as IL-6, IL-12, IL-23, or IL-1β from 
antigen presenting cells, thus resulting in further differen-
tiation of Th17 and Th17 cells [7].

Peroxisome proliferator-activated receptors (PPARs) 
are a kind of nuclear transcription factor that are activated 
by ligand, belonging to the type II nuclear receptors super-
family. PPARs include three subtypes: PPAR-α, PPAR-β/δ,  
and PPAR-γ, of which PPAR-α is a master controller of 
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cardiac lipid metabolism. Many studies have confirmed 
that PPAR-α plays a crucial role in cardiac hypertrophy 
and myocarditis [8]. Peroxisome proliferator-activated re-
ceptor α can also inhibit the release of many pro-inflam-
matory factors, reduce the production of chemotactic fac-
tors, and promote the differentiation of T cells to protective 
T-cell subsets. Fenofibrate is a PPAR-α agonist widely 
used in clinics for its effectiveness in reducing cholesterol 
and triglyceride. Recent studies have demonstrated numer-
ous pleiotropic effects of fenofibrate on the heart, such as 
preventing the development of myocardial inflammation 
in angiotensin-II-infused rats, attenuating isoproterenol-in-
duced acute myocardial ischaemic injury, and inhibiting 
the infiltration of macrophages and T lymphocytes into the 
left ventricle [9, 10].

Experimental autoimmune myocarditis (EAM) rat 
model can become into dilated cardiomyopathy (DCM), 
and the progression of DCM is similar to that of human 
myocarditis, which makes the EAM rat model a perfect 
choice for studying the immune mechanism of myocardi-
tis. Moreover, it was found that the activation and differ-
entiation of T cells, particularly T regulatory cells (Tregs) 
and Th17 cells, play an important role in the pathogenesis 
of EAM. In this study, through the establishment of the 
EAM model in rats and treatment with fenofibrate, we ex-
plored the curative effect of fenofibrate on EAM and the 
role of Tregs and Th17 cells in it.

Material and methods

Establishment of the EAM model and specimen 
collection

Twenty-four healthy adult male SD rats were select-
ed, weighing 200-220 g. Purified pig cardiac myosin (final 
concentration 10 mg/ml) was diluted with PBS and then 
fully emulsified in Freund’s Complete Adjuvant (FCA) of 
the same volume. Rats were equally randomly divided into 
the control group, model group (EAM group), and feno-
fibrate group (100 mg/kg). After being anaesthetised, the 

EAM group and the fenofibrate group received plantar sub-
cutaneous injection of the above-mentioned antigen (0.2 ml 
per rat), while the control group received equivalent normal 
saline. Then, fenofibrate was given to the fenofibrate group 
by gavage (100 mg/kg/d) and equivalent normal saline was 
given to the other groups, which lasted for 17 days.

On day 18, the rats were weighed and sacrificed in or-
der to take out heart tissues, then the heart tissues were di-
vided into two parts, and one part was fixed in 10% neutral 
formalin for histopathological analysis and the other was 
put in cryogenic tubes with liquid nitrogen for molecular 
biological study.

Detection of myocardial histopathology and 
mRNA level of cytokines in heart tissues and 
splenocytes

After being fixed by formalin for 24 hours, myocardi-
al tissues were subjected to ethanol dehydration, paraffin 
embedding, sectioning, and HE staining. 

Frozen myocardial tissues (100 mg) were made into 
small pieces for extracting the total RNA by Trizol meth-
od. Subsequently, reverse transcription reaction was per-
formed to synthesise cDNA. With GAPDH as the refer-
ence gene, target genes including IL-17A, IL-6, ROR-γt, 
IL-23P19, FOX-p3, IL-10, atrial natriuretic peptide (ANP), 
and brain natriuretic peptide (BNP) were amplified.  
Primers are shown in Table 1. The reaction processes 
were as follows: 95°C, 3 min → (95°C, 15 s → 60°C, 32 s)  
× 40 cycles; 95°C, 15 s → 60°C, 1 min → 95°C, 15 s, 
60°C, 15 s. The 2–DDCT method was used to measure the ex-
pression of target genes. DDC
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= (C
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)
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untreated group
. In the study, the control 

group was set as the untreated group.
Spleen tissue of healthy adult rat was taken out under 

aseptic conditions to prepare the splenocyte suspension. 
Then, splenocytes were inoculated in six-well plates at  
5 × 104 cells/ml and divided into control group, induction 
group, and fenofibrate group. For control group cells, only 
cell culture medium was given; for induction group and 

Table 1. Primers for real-time RT-PCR

Genes Sense primer Antisense primer

IL-17A 5’-tatcagtccccttccttg-3’ 5’-tcctgaacttctaacagctccacca-3’

IL-6 5’-ccgagtagacctcatagtgacctt-3’ 5’-cctattgaaatctgctgctctggtct-3’

IL-23P19 5’-gcacactagcctggagtgca-3’ 5’-tgtccgagtccagtaggtgct-3’

BNP 5’-gacgggctgaggttgtttta-3’ 5’-actgtggcaagtttgtgctg-3’

ANP 5’-catatggtttttctacagcatga-3’ 5’-tggttgaccgtacagagaagttt-3’

ROR-γt 5’-gcttctctcaggcttttggtc-3’ 5’-tggcttctttgactctgcttc-3’

FOX-p3 5’-tcagacattcgggaagcagtg-3’ 5’-attccgtctccttggttcagc-3’

IL-10 5’-gctatgttgcctgctcttactg-3’ 5’-tctggctgactgggaagtg-3’

GAPDH 5’-atcaccatcttccaggagcga-3’ 5’-agccttctccatggtggtgga-3’
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fenofibrate group cells, 4 μg/ml IL-6 + 2 μg/ml transform-
ing growth factor β (TGF-β) was added into the culture 
medium; moreover, fenofibrate (100 μg/ml) was also given 
to the fenofibrate group cells. After the dosing, all cells 
were continued culturing for 48 hours in incubators at 
37°C. Then cells were collected in order to draw total RNA 
by Trizol method and to detect mRNA level of cytokines in 
splenocytes. This test was conducted three times.

Determination of the content of NF-κB and 
PPAR-α in heart tissues 

Cell nuclear proteins and cytoplasmic proteins in heart 
tissues were extracted with extraction kits after homogeni-
sation. Then 12% or 10% polyacrylamide gel was used to 
separate NF-κB p50 or p65 protein, and then the proteins 
were transferred to nitrocellulose membrane and incubated 
overnight with primary antibodies (rabbit anti-NF-κB p50 
polyclonal antibody or rabbit anti-NF-κB p65 polyclonal 
antibody), the second antibody in sequence. With β-actin 
as the control, UVIDoc system was used to analyse grey 
scale values of proteins and calculate the grey ratio of  
NF-κB p50 and NF-κB p65 to β-actin.

Myocardial tissues were ground in liquid nitrogen, in-
cubated on ice with 200 μl precooled protein extraction 
reagent for 20 minutes, and centrifuged at 10,000 g for 
15 minutes. Then the supernatant was collected and West-
ern-blot was performed. The grey ratio of PPAR-α to β-ac-
tin was calculated.

Data statistics
All the experimental data were represented as mean ±SD 

and analysed by SPSS18.0 software. One-Way ANOVA  
was conducted for comparison between groups; when there 
was significant difference in variances, the q test was ad-
opted. When p < 0.05 the differences were statically sig-
nificant.

Results

Influence of fenofibrate on rat myocardial lesions
Compared with the control group, the heart weight of 

the EAM group was heavier than in the control group and 
the fenofibrate group (p < 0.05); the ratio of heart weight/
body weight (HW/BW) of the EAM group and the feno-

*vs. control group, p < 0.05; #vs. EAM group, p < 0.05. The same for subsequent figures 

Fig. 1. Body weight, heart weight, the ratio of heart weight/body weight (HW/BW), and mRNA expression level of ANP 
and BNP in heart tissues of rats (eight rats per group). A) Body weight and heart weight; B) the ratio of heart weight/
body weight, HW/BW; C) ANP mRNA expression; D) BNP mRNA expression 
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fibrate group were both higher than in the control group  
(p < 0.05) (Fig. 1A, B). The mRNA contents of ANP and 
BNP in the EAM group and the fenofibrate group were 
higher than those in the control group, and those in the 
fenofibrate group were lower than in the EAM group  
(p < 0.05) (Fig. 1C, 1D). Figure 2 showed that there was 
no inflammatory cell infiltration in the control group, 
while there was severe inflammatory cell infiltration in 
the EAM group and slight inflammatory cell infiltration  
in the fenofibrate group.

Influence of fenofibrate on cytokines mRNA 
level in heart tissues and splenocytes of rats

Figure 3 and Figure 4 show that mRNA levels of IL-6,  
IL-17A, ROR-γt, and IL-23P19 of the EAM group/in-
duction group in heart tissues/splenocytes were evidently 
higher than in other groups (p < 0.05). Conversely, the 
FOX-p3 mRNA level in the EAM group/induction group 
was lower than in other groups, and in the fenofibrate 
group it was higher than in the control group (p < 0.05); 
IL-10 mRNA level in the EAM group/induction group 
was higher than in the control group, and in the fenofi-
brate group it was higher than in the EAM group/induc-
tion group (p < 0.05).

Levels of NF-κB p65/p50 and PPAR-α protein  
in heart tissues

In order to validate whether fenofibrate can modify the 
expression of inflammatory factors in EAM rats through 
NF-κB, and considering NF-κB usually exists in the cyto-
plasm in the form of p65/p50 dimer, we analysed the level 
of NF-κB p50 and p65 protein in the rat heart. Table 2 and 
Fig. 5 showed that fenofibrate could significantly inhibit 
the up-regulation of NF-κB p50 and p65 proteins of EAM 
rats (p < 0.05). Considering that fenofibrate is a PPAR-α 
agonist, we also measured the expression of PPAR-α pro-
tein, and it showed that the PPAR-α level in the fenofi-
brate group was higher than that in other groups (p < 0.05).

Discussion
The activation and differentiation of T cells greatly 

influence the pathogenesis of EAM [11]. When there is 
no inflammation, TGF-β1 produced by the immune sys-
tem would inhibit the proliferation of T cells and induce 
the differentiation of Tregs, thus maintaining the immune 
tolerance, but when infection exists, considerable IL-6 is 
produced and the differentiation of Tregs is inhibited, so 
the differentiation of Th17 cells will be induced by IL-6 in 

A B C

Fig. 2. Histopathological analysis of rat myocardial tissues by HE staining (original magnification 400×). A) Control 
group; B) EAM group; C) Fenofibrate group
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combination with TGF-β, thus mediating pro-inflammato-
ry reactions [12, 13].

This study showed that fenofibrate was effective for 
treating EAM by alleviating the inflammatory cell infiltra-
tion and inhibiting the increase in heart weight caused by 
inflammation. Meanwhile, fenofibrate reduced the content 
of heart failure markers (ANP and BNP), and as a PPAR-α 
agonist it increased PPAR-α protein expression. Moreover, 
fenofibrate could reduce the expression of Th17-related 
cytokines (IL-6, IL-17A, ROR-γt, and IL-23P19) and in-
crease Treg-related cytokines (FOX-p3 and IL-10). These 
results imply that fenofibrate had a notable protective ef-
fect on the hearts of rats with myocarditis [14].

It was proven that IL-6 can induce autocrine secre-
tion of IL-21 in Th17 cells, and IL-21 can not only in-
duce IL-23 expression by positive feedback loop but also 
induce ROR-γt expression through its cooperation with  
IL-23, thus promoting IL-17 expression [15, 16]. As a core 
transcription factor in the development of Tregs, FOX-p3 
mainly regulates the transformation of naïve T cells to 
Tregs. When FOX-p3 expression is increased in T cells, 
it can inhibit the activity of ROR-γt, thus inhibiting the 
differentiation of T cells to Th17 cells [17, 18]. Based on 
the results of the study, we supposed that the effectiveness 
of fenofibrate on myocarditis is realised by inhibiting the 
differentiation and development of Th17 cells [19].
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Fig. 4. mRNA expression levels of cytokines in rat splenocytes in vitro (fold change relative to control group)

Table 2. Semiquantitative analysis of NF-κB p50, p65, and PPAR-α protein expression in heart tissues

Groups NF-κB p50 NF-κB p65 PPAR-α

Control group 0.327 ±0.013 0.406 ±0.010 0.473 ±0.016

EAM group 1.035 ±0.041* 1.354 ±0.037* 0.565 ±0.023

Fenofibrate group 0.596 ±0.023*# 0.738 ±0.022*# 1.268 ±0.049*#

* vs. control group, p < 0.05; # vs. EAM group, p < 0.05 

In addition, we also observed that PPAR-α protein ex-
pression increased significantly in the fenofibrate group. 
PPAR-α can inhibit NF-κB expression by inhibiting the 
activity of the NF-κB p65 subunit, thus modifying inflam-
matory factor expression and inhibiting local inflammation 

[20, 21]. Therefore, when fenofibrate elevated PPAR-α ex-
pression, the expression of NF-κB was restrained in EAM 
rats, which caused down-regulation of IL-6, IL-17, and  
IL-23P19, and inhibited the differentiation of Th17 cells. 
Because of the significant role of FOX-p3 and IL-10 
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Fig. 5. Immunoblot analysis of NF-κB p50/p65 and 
PPAR-α protein

	 Control group	 EAM group	 Fenofibrate group

NF-κB p50

NF-κB p65

PPAR-α

β-actin

during Treg differentiation and development, the up-reg-
ulation of FOX-p3 and IL-10 causes an increase in the 
content and activity of Tregs. The results of our study 
indicated that there was a certain reciprocal relationship 
between Tregs and Th17 cells [22, 23]. When fenofibrate 
was given, it may have corrected the imbalance between 
Tregs and Th17 cells. In such a case, the therapeutic out-
come and prognosis would be improved.

Conclusions
In EAM rats, via inhibition of the development and dif-

ferentiation of Th17 cells and promotion of the differentia-
tion of Tregs, fenofibrate can modify Treg/Th17 disorder, 
inhibit inflammation, and improve the prognosis.

The authors declare no conflict of interest.
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