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Abstract

Introduction: Breast cancer (BC) is associated with an inflammatory microenvironment. In BC, 
epidemiological evidence suggests that inflammation is associated with a poor prognosis. However, 
approaches to determine the extent of inflammation in the tumor microenvironment remain unclear.

Material and methods: We downloaded the expression profiles and corresponding clinicopathologi-
cal information of 1050 BC tissues and 59 cases of normal breast tissue from The Cancer Genome Atlas 
(TCGA) dataset. Similarly, data of 1050 BC tissues were downloaded from Gene Expression Omnibus 
(GEO) and 200 inflammation-related genes were downloaded from the MSigDB database. We developed 
an inflammatory risk model to reflect the immune microenvironment in BC.

Results: Multivariate Cox analysis showed that the risk score was an independent predictor of 
overall survival (OS). Inflammatory signature was significantly associated with clinical and molecu-
lar features and could serve as an independent prognostic factor for BC patients. Furthermore, most 
immune cells were significantly less infiltrated in the high-risk group than in the low-risk group. There 
was a significant difference in survival time between the group with a high and low tumor mutational 
burden (TMB) score, and the survival time of the patients with a low TMB was significantly higher 
than that of the high-risk group. The risk scores were significantly lower in patients who responded  
to immunotherapy (complete response/partial response – CR/PR) than in patients who did not respond 
to immunotherapy (stable disease/progressive disease – SD/PD). 

Conclusions: We developed and validated an inflammatory risk model, which served as an inde-
pendent prognostic indicator and reflected immune response intensity in the BC microenvironment.

Key words: breast cancer, inflammation response, tumor microenvironment, inflammatory risk 
model, immune, prognosis.

(Cent Eur J Immunol 2022; 47 (3): 218-233)

Introduction
The incidence of breast cancer (BC) is increasing, re-

sulting in high mortality and becoming the second leading 
cause of death among women [1]. The American Cancer 
Society annually assesses global cancer incidence rates. 
According to the latest data, in 2019, the estimated BC cas-
es and deaths were 271,270 and 42,260, respectively [2]. 
Although early diagnosis can reduce BC mortality, BC pre-
vention and control remain a matter of public concern [3]. 
Breast cancer is a clinically and biologically heteroge-
neous disease, and accurate prognostic prediction is very 
important for BC treatment planning [4, 5]. In addition, it 
is critical to improve overall clinical outcomes for patients. 
Therefore, it is urgent to establish an effective prognostic 
model for predicting the overall survival (OS) of BC pa-
tients to guide clinical practice.

It was found that leucocytes made a connection be-
tween cancer and inflammation. The “lymphoreticular 
infiltrate” reflects the origin of cancer at sites of chronic 
inflammation [6]. Since then, the role of inflammation in 
cancer has become the focus of research [7-9]. Inflamma-
tion is an important cause of cancer development. Inflam-
matory factors and their receptors are associated with the 
development of BC from multiple aspects [10]. Studies 
have shown that inflammation promotes and inhibits can-
cer [7, 11]. By analyzing parameters that are routinely 
available in blood, we can explore the relationship between 
cancer and inflammatory molecules. Studies have demon-
strated the presence of many features associated with in-
flammation in patients with liver cancer [12]. The inflam-
matory infiltrate is a prognostic marker in BC [13]. It is 
revealed that different inflammatory pathways play a role 
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in preinvasive and invasive BC [10]. Despite progression 
in the field of BC associated with inflammation, the un-
derlying mechanisms of BC remain largely unknown [1].

Herein, we downloaded mRNA expression profiles and 
corresponding clinical data of BC patients, followed by 
construction of the prognostic signature using differentially 
expressed genes (DEGs) associated with inflammatory re-
sponses. The model’s stability and reliability were validated 
in the Gene Expression Omnibus (GEO) dataset. Then, we 
further performed functional analysis to explore its underly-
ing mechanisms. Furthermore, we analyzed the association 
between prognostic gene expression and immune infiltration.

Material and methods

Datasets

Expression profiles and corresponding clinicopatho-
logical information of 1050 BC tissues and 59 cases of 
normal breast tissue were obtained from the TCGA dataset 
(http://cancergenome.nih.gov/). Similarly, data of 1050 BC 
tissues were downloaded from GEO (http://www.ncbi.nlm.
nih.gov/geo/) and data of 200 inflammation-related genes 
were downloaded from the MSigDB database (https://
www.gsea-msigdb.org/gsea/msigdb/). For the dataset in 
TCGA, RNA sequencing data (FPKM value) and clinical 
information were downloaded from University of Califor-
nia Santa Cruz (UCSC) Xena (https://gdc.xenahubs.net). 
The DEGs between tumor tissue and healthy tissue were 
identified by the “limma” R package.

Construction and evaluation of prognostic 
inflammatory-related gene signature

Univariate Cox analysis was utilized to screen inflam-
matory-related genes with prognostic value. LASSO Cox 
regression analysis was used to construct the prognostic 
model. The risk score based on the expression level of in-
flammatory-related genes and its corresponding regression 
coefficient was calculated:

Risk score = ∑ exp
i 
× b

i

n

i = 1

Based on the median risk score, patients were divided 
into high- and low-risk groups, and survival analysis was 
performed using the “survminer” R package to analyze  
the OS. The “survminer” R package and “timeROC”  
R package were used for time-dependent receiver oper-
ating characteristic (ROC) curve analysis to evaluate the 
predictive value of prognostic features.

Functional analyses of the inflammatory-related 
differentially expressed genes

To explore the enriched possible biological function 
and pathways of the inflammatory-related DEGs, we per-

formed Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis utilizing 
the DAVID tool with a statistical threshold of p < 0.05.

Estimate of tumor immune microenvironment 
cell infiltration

We utilized the single sample Gene Set Enrichment 
Analysis (ssGSEA) algorithm to quantify the relative 
abundance of each cell infiltration in BC tumor immune 
microenvironment (TIME). From Charoentong’s research, 
we obtained a gene set that marks the types of TIME infil-
trating immune cells, which included a variety of human 
immune cell subtypes.

Gene-set variation analysis (GSVA)

We downloaded “c2.cp.kegg.v7.2.symbols” in 
MSigDB. To uncover pathway enrichment between low- 
and high-risk patients, we utilized the “GSVA” package 
in R to assign pathway activity conditions. Moreover,  
the “limma” package in R was used to display distinctions 
in pathway activation.

Immune checkpoint blocking genomic  
and clinical information collection

We conducted a systematic search for immune check-
point blocking gene expression profiles. An immunothera-
py cohort, advanced urothelial cancer (IMvigor210 cohort) 
intervened with the anti-PD-L1 antibody atezolizumab 
(atezolizumab), was finally included. Raw count data were 
normalized with log2 (count+1).

Quantitative real-time polymerase chain 
reaction (qRT-PCR)

Total RNA was reverse-transcribed into complemen-
tary DNA (cDNA). U6 and glyceraldehyde-phosphate 
dehydrogenase (GAPDH) expression levels served as nor-
mal controls. The gene expression was quantified using 
the 2–ΔΔCt method.

Statistical analysis

All statistical analysis was conducted in R version 
3.5.3. The survival curve was generated by the Ka-
plan-Meier method, and the difference between groups was 
compared by the log-rank test. The Cox regression model 
was used for single factor and multivariate analysis, com-
bined with other clinical characteristics to determine the 
independent prognostic value of the risk score. The ROC 
curve was utilized to estimate the predictive efficiency of 
the risk model for 1 year, 3 years, and 5 years. The p-value 
< 0.05 was considered statistically significant.
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Results

Screening for differentially expressed 
inflammatory response genes related  
to prognosis

We collected and integrated RNA expression profiles 
from 1,050 BC samples and 113 healthy tissues included in 
the TCGA dataset. In total, 2425 genes were differentially 
expressed in BC tissues and paracancerous tissues. Among 
these, 37 genes were inflammatory response-related genes, 
as shown in Figure 1.

Enrichment analysis of DEGs associated  
with inflammatory response

In Figure 2, the results showed that inflammatory re-
sponse-related DEGs were mainly distributed on the cell 

surface and the outer surface of the plasma membrane, and 
participated in the regulation of the inflammatory response, 
cell chemotaxis, and immune response through the activ-
ities of chemokines, receptor binding, and protein bind-
ing. The KEGG enrichment analysis showed that DEGs 
were mainly enriched in cytokine receptor interaction, 
the chemokine signaling pathway and Toll-like receptor. 
Interleukin 6 (IL-6) and chemokine (C-C motif) ligand 2 
(CCL2) had more interactions with other genes in the pro-
tein-protein interaction (PPI) network analysis. This indi-
cated that IL-6, CCL2 and other inflammatory response-re-
lated DEGs may play a crucial role in BC.

Construction of prognostic models

Univariate Cox analysis showed that 6 inflammatory 
response-related DEGs were associated with OS in BC, 
as shown in Figure 3A. Then, we used Lasso regression to 

Fig. 1. Volcano plot of differentially expressed genes and heat map of all differentially expressed inflammatory response 
related genes
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obtain five candidate prognostic inflammatory response-re-
lated genes (Fig. 3B). Kaplan-Meier survival analysis 
showed that the prediction model possessed powerful ca-
pacity to predict the prognosis of BC patients, as shown in 
Figure 4. Furthermore, the protein levels of TACR1 and 

BTG2 in BC were lower than those in normal breast tissue, 
while levels of TAPBP and BST2 were higher than those 
in normal breast tissue, as shown in Figure 5.

Patients were divided into two groups based on the me-
dian risk score. High-risk patients had significantly lower 

Fig. 2. Cont. Gene Ontology (GO) enrichment, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analysis 
and protein-protein interaction (PPI) network of differentially 
expressed inflammatory response-related genes
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Fig. 4. Kaplan-Meier survival curves in the low-risk vs. 
high-risk group
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OS than low-risk patients. To assess the predictive effi-
ciency of the prognostic model in 1-, 3-, and 5-year surviv-
al, we performed ROC curve analysis. The area under the 
ROC curve (AUC) was 0.624 at 1 year, 0.668 at 3 years, 
and 0.622 at 5 years, indicating a satisfactory predictive 
performance (Fig. 6).

Validation of prognostic models

In order to test the stability of the prognostic model 
constructed based on the TCGA dataset, the risk scores of 
each sample were also calculated in the GSE20685 dataset. 
Based on the median of the risk scores, cancer samples 
were divided into high- and low-risk groups. Similar to the 
results obtained from the TCGA, patients in the high-risk 
group had a shorter survival time than those in the low-
risk group. In addition, in terms of effective survival pre-
diction of the prognostic model, 1-year AUC was 0.564, 
3-year AUC was 0.619 and 5-year AUC was 0.656 in the 
GSE20685 dataset, as shown in Figure 7. In addition, the 
prognostic model was validated in the GSE42568 data-
set (tissue samples from 17 normal controls and 104 BC 
cases). Based on the median of the risk scores, cancer 
samples were also divided into high and low-risk groups. 
Patients in the high-risk group had a shorter survival time 
than those in the low-risk group. In terms of effective sur-
vival prediction of the prognostic model, 1-year AUC was 
0.707, 3-year AUC was 0.608 and 5-year AUC was 0.67, 
as shown in Figure 8.

Relationship between risk scores and clinical 
features

In univariate Cox analysis, TCGA risk score was sig-
nificantly associated with OS (HR = 2.7, 95% CI = 1.9-3.8, 
p < 0.001). Furthermore, multivariate Cox analysis 
showed that risk score was an independent predictor of OS  
(HR = 3.0, 95% CI = 2.1-4.2, p < 0.001), as shown in Figu-
re 9A and B. The risk scores, age and stage were combined 
to construct a line chart to predict the probability of OS at  
1, 3 and 5 years. As shown in Figure 9C and D, each factor 
was allocated in proportion to its risk contribution to surviv-
al. The calibration curves showed that the combined model 
(the column chart) had high accuracy in 1-, 3-, and 5-year 
OS. Taken together, these results suggested that a combined 
model may be a better predictor of BC survival than a single 
prognostic factor.

Analysis of immune status and tumor 
microenvironment

To explore the relationship between risk score and tu-
mor immune microenvironment, ssGSEA was utilized to 
evaluate the status of 23 kinds of immune cell infiltration 
in the TCGA dataset. Then, the differences in immune 
cell infiltration among the high- and low-risk assessment 
groups were hypothesized, as shown in Figure 10A. We 
found that most immune cells were significantly less infil-
trated in the high-risk group, such as activated CD4 T cells, 

Fig. 5. Protein expression levels of 5-gene signature. A) BST2_BC tissue; B) BST2_Normal breast tissue; C) BTG2_BC 
tissue; D) BTG2_Normal breast tissue; E) TACR1_BC tissue; F) TACR1_Normal breast tissue; G) TAPBP_BC tissue; 
H) TAPBP_Normal breast tissue
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immature B cells, activated B cells, and activated CD4  
T cell activated CD8 T cells. Immunological score, stroma 
score, and ESTIMATE score were significantly lower in 
the high-risk group, while tumor purity was significantly 
higher in the low-risk group, as shown in Figure 10B-E. 
GSVA showed that metabolic pathways such as cell cy-
cle, DNA replication and homologous recombination were 
more active in the high-risk group, while metabolic path-
ways such as antigen processing and presentation, apopto-
sis, B cell receptor and T cell receptor were significantly 
inhibited in the high-risk group, as shown in Figure 10F.  
It is suggested that the reduced infiltration of immune cells 
in the tumor microenvironment in the high-risk group may 
be responsible for the poor prognosis of patients.

Fig. 6. Construction of prognostic models. A) Survival sit-
uation of high- and low-risk assessment groups; B) 5-gene 
signature risk score distribution; C) ROC curve was plot-
ted for 1-, 3- and 5-year overall survival
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Relationship between tumor risk score  
and tumor mutational burden

There is considerable evidence that tumor mutational 
burden (TMB) may determine patients’ response to cancer 
immunotherapy. According to the median TMB, tumor 
samples in TCGA were divided into two groups of high- 
and low-TMB score. As shown in Figure 11A, risk score 
was positively associated with TMB. There was a signif-
icant difference in survival time between the group with 
a high and a low TMB score, and the survival time of the 
patients with a low TMB was significantly higher than that 
of the high-risk group, as shown in Figure 11D. Further-
more, the TMB of patients in the high-risk-score subgroup 

Risk High Low

DeadAliveStatus
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Fig. 7. Validation of prognostic models in the GSE20685 
dataset. A) Survival situation of high- and low-risk assess-
ment groups; B) 5-gene signature risk score distribution; 
C) ROC curve was plotted for 1-, 3- and 5-year overall 
survival
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was significantly higher than that of patients in the low-
risk-score subgroup, as shown in Figure 11B and C.

Predictive value of tumor risk scores  
in immunotherapy 

To explore the predictive value of tumor risk score 
in patients’ immunotherapy, we conducted an evaluation 
analysis based on IMvigor210. It was noteworthy that risk 
scores were significantly lower in patients who responded to 
immunotherapy (complete response/partial response – CR/
PR) than in patients who did not respond to immunotherapy 
(stable disease/progressive disease – SD/PD), as shown in 
Figure 12A. Patients in the low-risk group were significantly 
more longevous than those in the high-risk group, as shown 

in Figure 12B. In Figure 12C, the objective response rate 
of immunotherapy in the low-risk group was significantly 
higher than that in the high-risk group. These data indicated 
that the risk score constructed by inflammatory genes could 
be associated with the response to immunotherapy.

Validation of the differentially expressed 5-gene 
signature in breast tissue samples

To validate the reliability of the TCGA dataset, the ex-
pression levels of the 5-gene signature were further identi-
fied by qRT-PCR. The expression levels of BST2, CXCL9 
and TAPBP were significantly higher in BC tissue sam-
ples than in the paracancerous tissue sample. In addition,  
the expression levels of BTG2 and TACR1 were signifi-



Central European Journal of Immunology 2022; 47(3)

Hongyan Zang, Gaofeng Ni, Liguo Gong

226

Fig. 8. Validation of prognostic models in the GSE42568 
dataset. A) Survival situation of high- and low-risk assess-
ment groups; B) The 5-gene signature risk score distri-
bution; C) ROC curve was plotted for 1-, 3- and 5-year 
overall survival
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cantly decreased in BC tissue samples (Fig. 13). The re-
sults were consistent with the bioinformatics analysis.

Discussion
Substantial data suggest that a link between cancer and 

inflammation is emerging [14-16]. Inflammatory diseases 
can increase the cancer risk [17-19]. People with ulcer-
ative colitis and Crohn’s disease have an increased risk of 
colorectal cancer [20]. Patients with schistosomiasis are 
prone to urinary bladder cancer [21]. Emerging evidence 
supports a link between BC and inflammation [22]. Chron-
ic inflammation plays critical roles in BC recurrence [23]. 
Inflammatory breast cancer (IBC), one of the most aggres-

sive types of BC conditions, suggests the relationship be-
tween inflammation and BC [24, 25].

Clinically, there are several polygenic-based risk 
models that can predict the prognosis of patients with can-
cer. For instance, the 21-gene expression assay supplies 
prognostic information in hormone-receptor-positive BC 
[26]. The 21-gene expression assay was strongly recom-
mended for BC patients by clinical practice guidelines. In 
our study, the 5-gene risk model represented a convenient 
assay in the clinic. The risk model consisted of five in-
flammatory-associated genes, most of which were up-reg-
ulated under an inflammatory condition. BST2 has an as-
sociation with a BC xenograft metastatic to the bone [27]. 
Similarly, CXCL9 plays an indispensable role in BC 
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Fig. 9. Prognostic value of the risk scores in BC. A) Univariate Cox analysis of TCGA; B) Multivariate Cox analysis  
of TCGA; C) Nomogram of clinical features and risk scores; D) Calibration curve for the 1-, 3- and 5- year overall 
survival nomogram model
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patients for immune checkpoint-based therapies [28].  
As a tumor suppressor in some types of malignancy, 
BTG2 is associated with proliferation and apoptosis [29].  
The tachykinin-1 receptor (TACR1) is an oncogene in 
some malignancies [30].

Inflammatory cells in the tumor microenvironment in-
fluence BC progression [31]. In invasive BC, inflammatory 
cells constitute 50% of the total tumor mass and include 
macrophages, T and B lymphocytes [32]. Infiltrating tu-
mor-associated leukocytes were considered as an intrin-

sic mechanism for defense against tumor development. 
Inflammatory cells may stimulate tumor cell proliferation 
and invasion by secreting cytokines, thereby affecting tu-
mor progression [33]. Herein, we evaluated the status of  
23 kinds of immune cell infiltration. The results showed 
that most immune cells were significantly less infiltrat-
ed in the high-risk group, such as activated CD4 T cells, 
immature B cells, activated B cells, and activated CD4  
T cell activated CD8 T cells. Immunological score, stroma 
score, and ESTIMATE score were significantly lower in 
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Fig. 10. Relationship between tumor risk score and immune cell infiltration. A) Heatmap of distribution of immune cell 
infiltration ratio; B) Differences in immune scores; C) Differences in matrix scores; D) Differences between high- and 
low-risk scores in ESTIMATE scores; E) Differences in tumor purity 
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the high-risk group, while tumor purity was significantly 
higher in the low-risk group.

TIME may influence the prognostic classification of BC 
patients. The complex interplay between tumor cells and 
the tumor microenvironment not only plays an important 
role in tumor development, but also has an important im-
pact on the efficacy of immunotherapy of patients [34, 35].  
The high immune infiltration in the low-risk group partly 
reflects the better effect of various treatments, which means 

that our signature can distinguish the survival prognosis of 
the patients but also reflect the infiltration degree of immune 
cells [36]. Additionally, we analyzed the relationship be-
tween risk score and TMB to determine the prognosis of BC 
patients, and the results suggested that the poor prognosis in 
the high-risk group could be due to more mutated genes in 
this group. Since BC immunotherapy remains in its infancy, 
its high TMB score and many mutated genes may benefit 
patients with a poor prognosis [37].
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by qRT-PCR. *p < 0.05, **p < 0.01
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Herein we have provided a comprehensive assessment 
of the prognostic signature generated and validated in the 
study, a clinically promising tool that can be applied to 
classify BC patients into different outcomes and levels of 
immune infiltration. Our analysis should be further vali-
dated by prospective studies in multicenter clinical trials. 
There may be some bias in the selection of prognostic poly-
genic signals. However, as this feature is highly correlated 
with prognosis and immune infiltration, the role of these 
genes warrants further investigation, especially in BC.

In summary, the 5-gene signature is a potential prog-
nostic tool to predict the OS rate of BC patients grouped by 
risk factors. The nomogram comprising a 5-gene signature 
could help clinicians manage BC patients. The gene signa-
ture generated and validated could be related to the distinct 
survival outcome of BC patients, immune infiltration lev-
els and TMB scores.
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