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A b s t r a c t

IInnttrroodduuccttiioonn::  Antineoplastic drug, Cyclophosphamide (CP), is a widely used drug
that causes toxicity through its metabolites, phosphoramide mustard and acrolein.
Squalene (SQ), an intermediate in the cholesterol metabolism has antioxidant
and membrane stabilizing property. In the present study, the protective role of
SQ towards the tissue defense system of the liver and kidney in the toxicity
induced by CP was assessed.
MMaatteerriiaall  aanndd  mmeetthhooddss:: Normal Wistar albino rats were administered CP in a dose
of 150 mg/kg b.wt., i.p., twice, for 2 consecutive days to induce toxicity. SQ, in
a dose of 0.4 ml/day/rat p.o. was used to treat the toxicity induced by CP.
RReessuullttss::  Significantly decreased activities of enzymic antioxidants [superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST)
and glutathione reductase (GR)], decreased levels of reduced glutathione and increased
levels of thiobarbutric acid reactive substance (TBARS) were observed. These
pathological alterations were significantly normalized during the treatment of SQ.
CCoonncclluussiioonnss:: CP toxicity increased the free radical levels in the tissues and affected
the activities of the enzymic antioxidants. Increased levels of TBARS [a measure
of lipid peroxidation (LPO)] and decreased levels of GSH (due to utilization for
detoxification process) evidenced the damage to these tissues. Protection exerted
by SQ could be due to free radical quenching, providing additional alkylation site
to CP metabolites and by inducing enzymic antioxidant production in these tissues.
In conclusions improved antioxidant defense system in the liver and kidney of the
experimental rats confirms the protective role of SQ against CP induced toxicities.

KKeeyy  wwoorrddss::  enzymic antioxidants, TBARS, reactive oxygen species, free radicals,
liver, kidney.

Introduction

A free radical is any atom or molecule, capable of independent existence
that has one or more unpaired electrons. If uncontrolled by the protective
mechanisms, it leads to a pathological effect which causes damage to cellular
membranes, proteins and nucleic acids [1]. The major limitation of cancer
chemotherapy is the injury of the normal tissue, leading to multiple organ
toxicity [2, 3]. CP is an alkylating agent, the most commonly used anticancer
and immunosuppressant drug. It is used for the treatment of chronic and
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acute leukemias, multiple myeloma, lymphomas, and
rheumatic arthritis and also in the preparation for
bone marrow transplantation [4, 5]. High-dose
chemotherapy administered in bone marrow
transplantation regimens commonly induces nausea,
emesis, oropharyngeal inflammation, abdominal pain
and diarrhea [6]. Phosphoramide mustard and acrolein
are the two active metabolites of CP formed by hepatic
microsomal cytochrome P450 mixed functional oxidase
system [7]. CP’s antineoplastic effects are associated
with the phosphoramide mustard, while the acrolein
is linked with its toxic side effects [8]. Chemotherapy
and radiation therapy are associated with increased
formation of reactive oxygen species (ROS) and
depletion of critical plasma and tissue antioxidants
[9]. Two reactive moieties of acrolein, an aldehyde
group and an unsaturated bond, have the potential
to cross-link to nucleophilic groups on two different
proteins [10]. Acrolein is a relatively long-lived molecule
that might diffuse some distance before reacting with
proteins [11]. Acrolein interferes with the tissue
antioxidant defense system [12], produces highly
reactive oxygen free radicals [13] and is mutagenic to
mammalian cells [14]. Due to the highly reactive
nature, free radicals can readily combine with other
molecules, such as enzymes, receptors, and ion
pumps, causing oxidation directly, and inactivating or
inhibiting their normal functions [15].

Liver disorders were observed in the elevated
therapeutic dose of CP [16-19]. The nephrotoxicity of
CP was evidenced by the proximal tubular damage,
a significant reversible depolarization and a decrease
in conductance [20, 21]. CP induced urinary bladder
inflammation has demonstrated alterations in
neurochemical [22] electrophysiological properties
[23] of the bladder.

Effects due to CP toxic metabolites could be avoided
by detoxifying with agents which are able to conjugate
or quench these toxic metabolites. An antioxidant
agent like amifostine has a cytoprotective action
against platinum-induced renal toxicity, was avoided
due to its toxicities like hypocalcaemia, anxiety and
hypotension [24, 25]. Other cytoprotective agents such
as sodium thiosulphate, mesna and procainamide are
not approved for wide clinical use due to lack of efficacy
and non-selective cytoprotection against toxicity
induced by platinum and alkylating agents in tumour
tissues [26]. In a recent work, it has been concluded
that hydralazine prevents the protein cross-linking
against acrolein mediated toxicity [27]. Therefore, there
is a need for a novel agent, which would protect the
normal tissue from chemotherapy-induced toxicity
without tumour protection and tumour growth
stimulation properties.

SQ, the intermediate of the cholesterol metabolism,
is an isoprenoid compound having six isoprene units.
SQ has been reported to possess antioxidant and
membrane stabilizing properties [28-30]. In vitro
experimental evidence indicates that the SQ is a highly

effective singlet oxygen scavenging agent [31]. The
protective activity of SQ against radiation-induced
injury was demonstrated in a mouse model [32].
Several experimental models demonstrated the
detoxifying activities of SQ against a wide range of
chemicals and a sink for highly lipophilic xenobiotics,
assisting in their elimination from the body [33-35]. In
our previous studies, it has been proved that the
toxicity induced within 10 days by the administration
of CP was attenuated by the treatment of SQ [36, 37].
The present study was designed to evaluate the
protective efficacy of SQ towards the antioxidant
defensive mechanism in CP induced toxicity in the
liver and kidney of the experimental rats.

Materials and methods

CChheemmiiccaallss  aanndd  ddrruuggss

Cyclophosphamide (Ledoxan®) was purchased
from Dabur Pharma Limited, New Delhi, India.
Squalene (≥97% by GC) was procured from Sigma
Chemicals Company, St. Louis, MO, USA. All other
chemicals and solvents used were of the highest
purity and analytical grade.

EExxppeerriimmeennttaall  ddeessiiggnn

Male albino Wistar rats (150±10 g) procured from
Tamilnadu University for Veterinary and Animal
Sciences, Madhavaram, Chennai, India were used
for the study. Animals were fed with commercially
available standard rat pelleted feed. The feed and
water were provided ad libitum. The rats were
housed under conditions of controlled temperature
(25±2°C) and were acclimatized to 12:12 h light: dark
cycles. Animal experiments were conducted
according to the guidelines of the Institutional
Animal Ethics Committee (Approval No. 01/006/06).

The rats were divided into four groups of six
animals each. Group I served as the vehicle (normal
saline) treated controls. Group II animals received
CP intraperitoneally dissolved in saline, in a dose
of 150 mg/kg b.wt., twice, for two consecutive days.
Group III animals received SQ orally in a dose of 0.4
ml/day/rat on all the days of the experimental period
(12 days) {Various doses of SQ (0.2, 0.4, 0.6, 0.8
and 1.0 ml/day/rat) were administered orally to the
CP intoxicated animals to optimize the SQ dose for
a maximum efficacy in the minimum dose,
determined by the levels of serum marker enzymes
for tissue damage (data not shown). It was found
that 0.4 ml/day/rat of SQ have the maximum
protective efficacy in the minimum dose. This dose
of SQ has the protective efficacy against CP induced
toxicities in the rats [36, 37]}. Group IV animals were
co-treated with CP (as in Group II) and SQ (as in
Group III) for the first two days and SQ treatment
was followed continuously daily for ten days up to
the end of the experimental period.
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At the end of the experimental period, all the
animals were sacrificed by cervical decapitation. The
liver and kidney were immediately excised and rinsed
with ice-cold physiological saline. These were
homogenized in 0.1 M Tris-HCl buffer (pH 7.4) and
aliquots of this homogenate were used for the assays.

SOD was assayed by the method of Misra and
Fridovich [38]. The degree of inhibition of auto oxidation
of epinephrine at an alkaline pH by SOD was used as
a measure of enzyme activity. CAT was assayed by the
method of Takahara et al. [39]. The amount of
hydrogen peroxide consumed by the enzyme was used
as a measure of the enzyme activity. GPx was assayed
by the method of Rotruck et al. [40]. The enzyme
activity was assessed in terms of utilization of the
glutathione and is based on the remaining glutathione
after the reaction, which forms a complex with
5,5-dithio-bis {2-nitrobenzoic acid} (DTNB). GST was
assayed by the method of Habig et al. [41]. GR that
converts oxidized glutathione (GSSG) to the reduced
form (GSH) was assayed by the method of Staal et al.

[42]. GSH was determined by the method of Moron et
al. [43]. The level of lipid peroxidation was assayed by
the method of Ohkawa et al. [44] and was expressed
as nmoles of TBARS g–1 of tissue.

SSttaattiissttiiccaall  aannaallyyssiiss

The results were expressed as the mean ± standard
deviation for six animals in each group. Differences
between the groups were assessed by the analysis of
variance (ANOVA) using the SPSS 10.0 software for
Windows. Post-hoc testing was performed using the
least significance difference (LSD) test.

Results

Severe biochemical changes in the liver and kidney
of the experimental animals were observed due to
oxidative damage during the intraperitoneal
administration of CP. Table I shows the abnormally
decreased activities of enzymic antioxidants in the
liver of the experimental animals that indicate cellular
damage caused by CP. The activities of SOD, CAT, GPx,
GST and GR were decreased by 25.8, 31.7, 32.2, 41.5
and 47.3 %, respectively, in Group II animals when
compared with the control (Group I). Activities of
these antioxidant enzymes were restored to near
normalcy after SQ administration p.o. to the CP
toxicated rats. No significant alterations were
observed in any of these parameters in the SQ alone
(Group III) administered rats except the level of GR,
which was significantly elevated than the control.

Toxicity of CP in the liver was also confirmed by
the 1.26 fold increase in the level of TBARS (Figure 1)
and 45% decrease in the level of GSH (Figure 2) in the
group II animals when compared with the control.
These abnormal alterations were reverted to
significantly normal during the treatment with SQ. No
significant changes were observed in the SQ alone
administered group, which showed the non-toxic
nature of the SQ.

Table II shows the abnormally decreased activities
of enzymic antioxidants in the kidney of the

TTaabbllee II..  Activities of enzymic antioxidants in the liver of the experimental animals. Results are expressed as mean
±S.D. for six rats

PPaarraammeetteerrss GGrroouupp II ((CCoonnttrrooll)) GGrroouupp IIII ((CCPP)) GGrroouupp IIIIII ((SSQQ)) GGrroouupp IIVV ((CCPP  ++  SSQQ))

SOD 9.3±0.57 6.9±0.78*** 9.6±1.03NS 8.4±0.79**

CAT 65.12±4.64 44.49±5.78*** 70.66±8.41NS 63.41±8.12***

GPx 103.87±9.44 70.43±8.91*** 101.34±7.24NS 92.72±8.31**

GST 11.34±0.97 6.63±0.69*** 11.47±1.27NS 8.35±0.74**

GR 1.65±0.08 0.87±0.07* 1.75±0.07* 1.33±0.12***

Units – SOD: 50% inhibition of epinephrine auto oxidation min–1; CAT: nmoles of H2O2 decomposed min–1 mg–1 protein; GPx: nmoles of
GSH oxidized min–1 mg–1 protein; GST: Units min–1 mg–1 protein; GR: nmoles of NADPH oxidized min–1 mg–1 protein. Comparisons are made
between Control (group I) with CP (group II), CP with CP+SQ (group IV) and Control with SQ (group III). Statistical significance: *P≤0.05,
**P≤0.01 and ***P≤0.001
NS – not significant

45

40

35

30

25

20

15

10

5

0
Control CP SQ CP+SQ

GGrroouuppss

***

NS

***

NN
aann

oomm
ooll

eess
  TT

BBAA
RRSS

//gg
  llii

vvee
rr  tt

iiss
ssuu

ee

NS – not significant

FFiigguurree 11.. Levels of TBARS in the liver of the
experimental animals. Results are given as mean 
± S.D. for six rats. Comparisons are made between
Control (group I) with CP (group II), CP with CP+SQ
(group IV) and Control with SQ (group III). Statistical
significance: *P≤0.05, **P≤0.01 and ***P≤0.001
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TTaabbllee IIII..  Activities of enzymic antioxidants in the kidney of the experimental animals. Results are expressed as mean
±S.D. for six rats

PPaarraammeetteerrss GGrroouupp II ((ccoonnttrrooll)) GGrroouupp IIII ((CCPP)) GGrroouupp IIIIII ((SSQQ)) GGrroouupp IIVV ((CCPP  ++  SSQQ))

SOD 4.35±0.38 3.21±0.42*** 4.29±0.35NS 3.94±0.4*

CAT 10.33±1.12 6.98±0.83*** 10.38±0.96NS 8.94±0.71**

GPx 57.49±4.91 42.75±5.32*** 55.94±6.31NS 55.79±4.4***

GST 9.48±1.04 6.47±0.75*** 9.12±0.83NS 8.38±0.94**

GR 0.78±0.09 0.59±0.05** 0.8±0.07NS 0.72±0.08**

Units – SOD: 50% inhibition of epinephrine auto oxidation min–1; CAT: nmoles of H2O2 decomposed min–1 mg–1 protein; GPx: nmoles of
GSH oxidized min–1 mg–1 protein; GST: Units min–1 mg–1 protein; GR: nmoles of NADPH oxidized min–1 mg–1 protein. Comparisons are made
between Control (group I) with CP (group II), CP with CP+SQ (group IV) and Control with SQ (group III). Statistical significance: *P≤0.05,
**P≤0.01 and ***P≤0.001
NS – not significant
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FFiigguurree 22..  Levels of GSH in the liver of the experimental
animals. Results are given as mean ±S.D. for six rats.
Comparisons are made between Control (group I)
with CP (group II), CP with CP+SQ (group IV) and
Control with SQ (group III). Statistical significance:
*P≤0.05, **P≤0.01 and ***P≤0.001

experimental animals. The activities of SOD, CAT, GPx,
GST and GR were decreased by 26.2, 32.4, 25.6, 31.8
and 24.4 %, respectively, in Group II animals when
compared with the control (Group I). Activities of
these antioxidant enzymes were restored to near
normalcy after SQ administration p.o. to the CP
toxicated rats. No significant alterations were
observed in any of these parameters in the SQ alone
(Group III) administered rats. 1.57 fold increase in the
level of TBARS (Figure 3) and 43.78% decrease in the
level of GSH (Figure 4) in the group II animals when
compared with the control also confirm the CP
nephrotoxicity. These abnormal alterations were
reverted to significantly normal during the treatment
with SQ. No significant changes were observed in the
SQ alone administered group.

Discussion

High doses of CP can cause an acute form of
lethality within 10 days of its administration [45]. In

45

40

35

30

25

20

15

10

5

0
Control CP SQ CP+SQ

GGrroouuppss

***

NS

***

NN
aann

oomm
ooll

eess
  TT

BBAA
RRSS

//gg
  kk

iidd
nnee

yy  
ttiiss

ssuu
ee

NS – not significant

FFiigguurree 33.. Levels of TBARS in the kidney of the
experimental animals. Results are given as mean 
±S.D. for six rats. Comparisons are made between
Control (group I) with CP (group II), CP with CP+SQ
(group IV) and Control with SQ (group III). Statistical
significance: *P≤0.05, **P≤0.01 and ***P≤0.001
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FFiigguurree 44.. Levels of GSH in the kidney of the
experimental animals. Results are given as mean ±S.D.
for six rats. Comparisons are made between Control
(group I) with CP (group II), CP with CP+SQ (group IV)
and Control with SQ (group III). Statistical significance:
*P≤0.05, **P≤0.01 and ***P≤0.001
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our previous studies, it has been proved that the
toxicity induced by CP within 10 days of the CP
administration was attenuated by the treatment of
SQ [36], evidenced by the significant normalization of
clinical chemistry parameters and histopathological
studies of the liver and kidney. Administration of
intermittent massive doses of CP has been found to
be advantageous in the chemotherapy [46]. The
cellular mechanism of toxicity is mediated by an
increase in the free radicals through intracellular
phosphoramide mustard and acrolein, the principle
alkylating metabolites of CP [47]. Increased free radical
production stimulates lipid peroxidation and is the
sources for the degradation of DNA, lipids and
carbohydrates [48]. ROS can affect many kinds of
proteins, interfering with the enzyme activity and the
functions of the structural proteins [49]. The
antioxidant enzymes SOD, CAT and GPx act in
coordination to combat the formed ROS. Cellular
defense against the intermediates of dioxygen
reduction (superoxide radical, hydroxyl radical and
hydrogen peroxide) were done by these enzymic
antioxidants. A decrease in the activities of the
antioxidant enzymes of CP administered rats was due
to the inactivation of these enzymes by ROS [13]. This
causes further elevation in the levels of ROS which
severely decrease the activities of SOD, CAT and GPx.
This is consistent with the previous report [50].
Yoshiyuki Kohno et al. stated that the rate constant
of quenching of singlet oxygen by SQ was similar to
that of α-tocopherol [51]. The SQ treated group (Group
IV) showed improved activities of SOD, CAT and GPx
than the CP group. These evidenced the low ROS level
and ROS mediated inactivation of enzymes were
prevented by SQ protecting the hepatocytes and
nephrocytes from damage.

GST isozymes catalyse the conjugation of
glutathione to several electrophilic compounds,
including polyaromatic hydrocarbon [52]. CP
administration decreased the activities of GSH
metabolizing enzymes, GR and GST. GR contains one
or more sulphydryl group residues, which are
essential for the catalytic activity and are vulnerable
to free radicals [53]. Another possible mechanism for
the decreased activity of GR could be due to the
selective reaction of acrolein with the active site
sulfhydryl cysteine [54]. These might be the reason
for the decreased activity of GR in CP administration.
This, in turn reduces the regeneration of GSH from
GSSG by GR. The decreased availability of GSH partly
might be responsible for the decreased activity of GST
and also because of its oxidative modification in its
protein structure. SQ treatment enhanced the
activities of GR and GST. This reveals the attenuation
of CP toxicity by SQ. It can also be hypothesized that
SQ might have provided an additional alkylation site
for CP toxic metabolites and exert its protection. The
activity of GR was significantly increased in the SQ

alone administered group than the control, which
could be due to the antioxidant and the membrane
stabilizing potential of SQ.

Increased lipid hydroperoxides and thiobarbituric
acid-reactive substances also suggest oxidative stress
in patients receiving chemotherapy [55]. Pathological
changes associated with the significant increase in
LPO, depletion in non-protein sulfhydryl groups and
decrease in CAT activity reflects many functional
alterations such as drop in the glomerular filtration
rate, glomerular capillary damage and tubulotoxicity
[56]. Due to the lipid peroxidation induced by CP, the
levels of TBARS increased in the liver and kidney. This
might be due to the increased production of free
radicals or decreased enzymic antioxidant defense
system. Following the administration of SQ, the levels
of TBARS were maintained to the near normal status
which indicates the reduced level of LPO. From this, it
could be concluded that the oxidative stress induced
by CP was attenuated by SQ due to its antioxidant
property [29] and membrane stabilizing property [30].
This is consistent with the previous reports of our
laboratory [37].

Glutathione, the non-enzymic antioxidant is an
important scavenger of electrophiles such as acrolein
[40, 57] and has been shown to be a critical factor in
the toxicity of CP to hepatocytes [58]. GSH is known
to protect renal and neuronal cells from cisplatin
induced toxicity [59]. Depletion of plasma and tissue
GSH appears to contribute to chemotherapy induced
organ toxicity [60, 61]. In the present study, oxidative
stress due to CP decreased the GSH levels in the liver
and kidney. SQ treatment increased the levels of GSH
(might be indirectly by increasing the GR activity),
which is essential for detoxification processes and
exerts protection for these tissues.

Conclusions

In the present study, the toxicity produced by CP,
evidenced by decreased activities of enzymic
antioxidants, elevated levels of TBARS and decreased
GSH levels in the liver and kidney was attenuated by
the treatment of SQ to the experimental rats. From
these observations, it is possible to conclude that SQ
was found to be effective in normalizing these
pathological changes by modulating the antioxidant
defense system through enzymic antioxidants.
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