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Abstract

We report here an electron microscopic study of selected nervous system tissues from pigs infected experimentally
with the agent of bovine spongiform encephalopathy (BSE). Generally, the ultrastructural neuropathology of BSE-affect-
ed pig brain resembled that of BSE-affected cattle brain. Spongiform change, in the form of membrane-bound vac-
uoles separated by septae into secondary chambers, dominated the pathology. Numerous astrocytic processes were
visible in close conjunction with elongated microglial cells. Neuronal degeneration presented as either dystrophic neu-
rites or by the formation of autophagic vacuoles. Altered subcellular organelles: mitochondria, electron-dense bod-
ies, autophagic vacuoles, neurofilaments and “branching-cisterns” accumulated in abnormal neurites. Autophagic vac-
uoles appeared as neuronal cytoplasm of increased electron-density sequestrated by intracytoplasmic membranes.
Tubulovesicular structures were numerous, particularly in the cerebellum. Unusual crystalloids were observed in the
white matter. In conclusion, experimental BSE in pigs demonstrated ultrastructural pathology in keeping with that
observed in other spongiform encephalopathies.
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Bovine spongiform encephalopathy (BSE) is a trans-
missible neurodegenerative disorder previously epidemic
among cattle in the United Kingdom, with subsequent
cases worldwide and which has now declined to a very
low incidence due to rigorous controls [8,24,73,92].
Like other scrapie-like transmissible spongiform ence-
phalopathies (TSE) [48], BSE is caused by an elusive pat-
hogen which has historically been variously termed
“a slow unconventional virus” [23], “virino” [33] and more
recently, a “prion” [74]. Originally transmitted to cattle
via meat-and-bone meal in commercial feedstuffs [91],

BSE has been transmitted in primary inoculum to a wide
range of food animal species [82] and in addition to mice
[10,20,22], mink [75] and the common marmoset [2].

Neuropathologically, both natural and experimen-
tal BSE is characterized by spongiform change and astro-
cytosis in the neuropil and vacuolation of selected nuclei
of the brain stem [81,84,85,88,90,91] and accumulation
of the proteinase-resistant isoform of PrP (PrPSc) [83,84].
Scrapie-associated fibrils (SAF) or “prion rods” which are
visualized by negative-staining electron microscopy in
brain extracts [9,29,77] are also associated with disease,
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and there is a good correlation between degree of
pathology and SAF yield [89].

To date, ultrastructural studies of spongiform en-
cephalopathies have been conducted in primates, in-
cluding humans [37,38,41,51,53,60]; ruminants (cattle,
sheep, mule deer and elk) [4-6,16-18,26,27,46,66,67] and
laboratory rodents [12,31,32,47,64,65,70; for review:
30,66,67]. The successful transmission of BSE to do-
mestic pigs [14,86], which belong to the order Artio-
dactyla (even-toed hoofed animals), made it possible
to study the pathology of this disease in another spe-
cies and to test whether tubulovesicular structures, the
only disease-specific structures observed in situ [49,53,
55,59,62,65] occur also in BSE-affected pig brain.

Material and methods

Experiment design and inoculation
procedure

The pigs were infected at 1-2 weeks of age by mul-
tiple-route parenteral inoculation with a homogenate
of bovine brain from natural BSE cases, as described
in full previously [76,86,87]. All challenges were carried
out in accordance with the Animals (Scientific Proce-
dures) Act, 1986, under licence from the UK Home
Office. Animals were sedated with azoperone (Stres-
nil; Janssen Animal Health) and killed by the intravenous
injection of pentobarbitone sodium followed by exsan-
guination. When clinical disease developed, animals
were killed and samples collected immediately post-
mortem.

Electron microscopy

Multiple samples, comprised 2-3 mm3, of cerebral
cortex, brain stem at the level of vestibular nuclei, ven-
tral horns of the spinal cord, cerebellum and dorsal
root ganglia, selected on the basis of the previously
determined prevalence of light-microscopy changes
[76,87], were fixed immediately after dissection in 2.5%
glutaraldehyde, freshly prepared in phosphate buffer
(pH 7.4), then postfixed in 1% osmium tetroxide and
processed for routine electron microscopy. Compar-
able areas of brain from uninoculated pigs served as
controls.

Results

In general, the ultrastructural features of BSE-affect-
ed pig brain were similar to those of BSE-affected cat-
tle [46,66,67] and humans with TSEs [60,61]. Spongi-
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form change in the form of membrane-bound vacuoles
(Fig. 1) separated by membranes curled into second-
ary chambers dominated the pathology. A dense astro-
cytic reaction was accompanied by abundant elongated
microglial cells. Of particular note was the finding of
numerous astrocytic processes in close conjunction with
microglial cells. Neuronal degeneration presented as
either neuroaxonal dystrophy, as evidenced by dystro-
phic neurites, or autophagic vacuoles. Dystrophic neu-
rites accumulated altered subcellular organelles:
mitochondria (Fig. 1B), electron-dense bodies, neuro-
filaments and “branching-cisterns” (Fig. 2). Autopha-
gic vacuoles appeared as a part or parts of the neu-
ronal cytoplasm sequestrated by intracytoplasmic
membranes (Fig. 3). Sequestrated cytoplasm was of
higher electron density than the remaining cytosol. Dis-
continuity of plasma membranes was occasionally seen
(Fig. 3B, arrow). Tubulovesicular structures (TVS) were
numerous with the highest number of affected
processes in the cerebellum (Fig. 4). Many large mul-
tivesicular bodies were seen (Fig. 5).

Discussion

Not unexpectedly, the overall neuropathology of
experimental BSE in pigs resembled the main ultra-
structural features of BSE in cattle and other TSEs [for
review: 42,43,48,78,79]. However, the distribution of
lesions in pigs was different from that in cattle. In par-
ticular, the cerebral and cerebellar cortices in pigs were
more heavily involved. These quantitative differences
in pathology are not unprecedented, as it is well estab-
lished that the topography of lesions differs between
species or between strains of the agent passaged in
one species [3,15,21]. It remains unclear to what
extent such differences are explicable in terms of tar-
geting of the agent to different anatomical regions [11]
or selective vulnerability of different neuronal popu-
lations, but both phenomena are considered to be
important.

The observation of TVS in the pig established their
occurrence in another animal model of experimental
spongiform encephalopathy and in a mammalian spe-
cies not previously used in TSE research. The molec-
ular composition and the biological significance of TVS
remains unknown [49,55]. TVS have been found in all
naturally occurring and experimentally induced spongi-
form encephalopathies in which the appropriate
examinations have been made [35]. Examples include
natural Creutzfeldt-Jakob disease [1,53,55,60], Gerst-
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Fig. 1. A) A typical vacuole containing numerous secondary chambers. Original magnification, x 4400. B) A part

of a vacuole, with curled membrane fragments within. A dystrophic neurite is seen in the vicinity. Original
magnification, x 20 000.
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Fig. 2. A neurite containing branching cisterns. Original magnification, x 16 000.

mann-Straussler-Scheinker disease (GSS) [51], BSE
[46,66,67], and natural and experimental scrapie [4,62,
65,69,70]. This comprehensive association suggests that
they represent a morphological component closely
linked to the basic disease pathomechanism. This is
further supported by the observation that TVS appear
early in the incubation period. For example, in hamsters
infected with the 263K strain of scrapie, in which the
incubation period lasts approximately 8 weeks, TVS
were observed 3 weeks postinoculation [62]. Addi-
tionally, the number of neuronal processes containing
TVS generally correlates well with the infectivity titre
[62]. Thus, the highest number of processes involved
was seen in hamsters infected with the 263K strain of
scrapie, followed by the next highest frequency in ham-
sters infected with the 22C strain of scrapie and in mice
infected with the Fujisaki strain of CJD [62]. This cor-
responds to infectivity titres in brains of 104 LD, for
hamsters infected with the 263K strain of scrapie agent
and 3.1 x 104 LDsg in CJD virus-infected mice, respec-
tively. In contrast, the lowest number of neuronal
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processes containing TVS is reported for natural dis-
eases like scrapie [4], BSE [46,66,67] or CJD and GSS
[51,53,55,60,61]. The frequency of TVS-containing pro-
cesses in BSE-affected pig brains was high but, as the
titre there is unknown, it is impossible to judge wheth-
er this finding represents a true correlation or a coin-
cidental finding. In conclusion, irrespective of what TVS
represent, the necessity for further studies is obviously
clear.

Autophagy is an important component of the ultra-
structural picture of TSE [50,57,58,80], but its exact role
and whether it is protective or destructive is not well
established [39]. Autophagy was initially shown in scra-
pie-infected hamsters [7,63] and later in CWD-infected
cervids [26], and the present authors consider it to be
a deleterious process leading to neurodegeneration [56].

Different types of autophagy have been described:
macroautophagy (here called just “autophagy”), micro-
autophagy and chaperon-mediated autophagy [34].
One of these is macroautophagy, which is the intra-
cellular bulk degradation of organelles. Its stages com-
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Fig. 3. A) A myelinated neurite containing numerous autophagic vacuoles (arrowheads). Original magnifica-
tion, x 12 000. B) A neurite containing several autophagic vacuoles, the discontinuity of plasma membrane
is labelled with an arrow. Original magnification, x 12 000.
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Fig. 4. Lower (A) and higher (B) magnification of TVS (arrows). Original magnification, (A) x 12 000, (B) 50 000.
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prise the formation of semi-circular membrane elon-
gations which engulf a target portion of the cytoplasm
(a cargo), forming a membrane sac which fuses with
a lysosome to form an autophagosome. Such membra-
nes are observed readily in scrapie-affected hamster brain
[63] but not so readily in different models.

Several investigators have suggested that autophagy
plays a beneficial role in prion infection [28]. For instance,
imatinib, an autophagy inducer [93], not only delays
the onset of clinical disease following peripheral ino-
culation but also clears PrPSc from scrapie-infected cul-
tures [19]. Rapamycin, acting through the target of rapa-
mycin (TOR) reduced the level of PrPSc and prolonged
the incubation when given in the last third of the ex-
pected incubation period [28]. Recent observations sug-
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Fig. 5. Four examples of multivesicular bodies. Original magnifications (A-C), x 50 000; (D), x 30 000.

gest a “double-edged” role for autophagy [13]. For exam-
ple, in Alzheimer’s disease (AD), another protein-mis-
folding disorder, upregulation of autophagy contribu-
tes to beta-amyloid pathology [68]. This upregulation
of autophagy may result in cell-death through distor-
tion of neuronal metabolism or loss of synapses and
dendrites. The abundance of dystrophic neurites con-
taining abundant autophagic vacuoles and lysosomal
dense bodies has been shown repeatedly in prion dis-
eases and other protein-misfolding diseases [25,36,40,
44,45,52,54,71,72]. In Drosophila transfected with Ab42
(a major amyloidogenic peptide AD plaque forming),
Ling et al. [68] found increased macroautophagy and
dystrophic neurites typical of AD. Rapamycin increased
the number of autophagic vacuoles and electron-lucent
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areas in dystrophic neurites, probably reflecting enzyme
leakage from post-lysosomal autophagic vacuoles,
which may lead to neurodegeneration. Also, membrane
erosion was seen in AB42-Drosophila and we also
observed membrane discontinuity in dystrophic neurites
in this study. Collectively, the very presence of dystrophic
neurites may suggest that autophagy, over certain thresh-
old tolerated by the brain may become deleterious.
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