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Ischemia signalling to Alzheimer-related genes
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A b s t r a c t

In this paper we review the hard-earned data, which present ischemic induction of amyloid precursor protein, prese-
ni lins, apolipoproteins and secretases genes, playing key roles in  β-amyloid peptide generation. Presented data are
strongly supporting a hypothesis that brain ischemia may be involved in the aetiology of sporadic Alzheimer’s disease.
Potential contribution and impact of ischemically activated genes on the development of sporadic Alzheimer’s disease
remain to be established at both genetic and functional levels. The identification of the genes involved in sporadic Alzheimer’s
disease induced by ischemia will enable to further define the events leading to Alzheimer’s disease-related abnormalities.
Additionally, knowledge gained from the reviewed studies should facilitate the elaboration of effective treatment and/or
prevention of sporadic Alzheimer’s disease.

KKeeyy  wwoorrddss::  brain ischemia, postischemic dementia, Alzheimer’s genes, amyloid precursor protein, presenilins, apo lipoproteins,
secretases.

Review paper

Introduction

Alzheimer’s disease is the most widespread form
of progressive and irreversible dementia in the mature
population and accounts for more than 30-50% of cas-
es aged 80-90 and over [34,46]. Neuropathologically,
the disorder is characterized by neuronal death, intra-
and extracellular amyloid deposits and neurofibrillary
tangles formation in neurons located in specific brain
fields like e.g. hippocampus [3]. Factors that modify nutri-

tion of brain are among the most consistently identi-
fied etiological triggers in the development of the dis-
ease [51]. Since the neurovessels are the key site for
nutrient and waste products exchange like  β-amyloid
peptide between the brain tissue and systemic blood,
events that disturb focally or completely brain circu-
lation are likely to be the major culprit during the patho-
genesis of sporadic Alzheimer’s disease.

Deoxyribonucleic acid (DNA) is a special molecule
present in the nucleus of each organism and also brain
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cells, which controls the growth and development of
the human and animal being as genes. DNA controls
the processes of learning and maturation that turn 
the young brain into an adult brain. Once maturity is
reached, DNA controls the metabolic processes that
maintain the brain in its homoeostatic balance with
some physiological correction during ageing. It is also
possible that DNA may hold a darker secret. It may hold
the codes for the neurodegeneration of the brain with
age [61], for loss of memory and intelligence and for
the clinical syndrome termed dementia [4,41,77]. 
The neuropathological changes of some proteins seen
in brain tissue from demented patients (e.g. widespread
β-amyloid peptide deposition as diffuse and senile
plaques and tau protein pathology as neurofibrillary tan-
gles) may be a reflection of this dark and secret infor-
mation in specific brain genes [3,4,56,57]. For example,
tau hyperphosphorylation and amyloid appear to be
the neuropathological proteins most closely linked to
the cognitive decline in Alzheimer’s disease [21]. 

Current investigations have demonstrated a close
link between sporadic Alzheimer’s disease and ische -
mic brain episodes [6,43,44,47,50,53,63]. Additionally,
earlier epidemiological studies noted that brain is che -
mia increased the incidence of sporadic Alzheimer’s dis-
ease [15] and neurovascular risk factors for brain is che -
mia also raised the risk of sporadic Alzheimer’s disease
[58]. Clinical investigations revealed that neurovascular
factors could aggravate the progression of Alzheimer’s
disease [33,35]. The occurrence of different parts of amy-
loid precursor protein and phosphorylated tau protein
found in neurofibrillary tangles in ischemic brains
strongly suggests a close association between brain
ischemia and sporadic Alzheimer’s disease [26,36,
43,44,47,49,53,56,71,73]. Neuropathological post mortem
examinations of Alzheimer’s disease brains have
shown that 30% of patients show evidence of brain
infarction [34,46] and those cases with both Alzheimer’s
disease and brain ischemia present more severe cog-
nitive impairment than those without brain infarction
[66]. A recent study has found that brain ischemia in
hippocampus aggravates cognitive impairment of Alz-
heimer’s disease rats by promoting  β-amyloid peptide
generation and deposition, neuronal death [49] and
pathological phosphorylation of tau protein in ischemic
hippocampus [71], finally underpinning the idea that
enhanced inflammatory reactions [62] might be res -
ponsible for brain ischemia induced as vicious cycle
aggravation of cognitive impairment in Alzheimer’s dis-
ease rats [34]. 

In consequence, further experimental studies to clar-
ify the triggering effect of brain ischemia on Alzheimer’s
disease development will not only lead to re-evalua-
tion of the neuropathogenesis of Alzheimer’s disease
but may also provide key data for the prevention and
therapy of Alzheimer’s disease. Altogether, it is hypoth-
esized that the brain ischemia could be the main cause
of sporadic Alzheimer’s disease. Therefore, it is of con-
sequence to study the effects of ischemic brain epi -
sodes on Alzheimer’s disease formation through ani-
mal models for understanding of the neuropathogenesis
of sporadic Alzheimer’s disease. In the face of new in -
teresting findings, in this review we will try to put to -
gether all available information from a genetic point
of view. It is hoped that new findings will give some
insights on complex interaction between ischemic sig-
nalling to Alzheimer-associated genes and  β-amyloid
peptide generation in the progressing injury of the
ischemic brain to dementia with Alzheimer phenotype.

Induction of Alzheimer-associated genes
following experimental brain ischemia

AAmmyyllooiidd  pprreeccuurrssoorr  pprrootteeiinn  

Amyloid precursor protein is a member of a fam-
ily of conserved type 1 membrane proteins, which in
mammals includes amyloid precursor protein-like
protein 1 and amyloid precursor protein-like protein 2.
Although its function remains uncertain, putative phy -
siological roles in trafficking, neurotrophic signalli ng,
cell adhesion and cell signalling have been proposed.
After amyloid precursor protein is synthesized, the
mature glycosylated form of amyloid precursor protein
in the trans-Golgi network is delivered to the plasma
membrane, where it is fairly rapidly turned over by
either of two processes: non-amyloidogenic and amy-
loidogenic.  β-amyloid peptide is derived from the larg-
er parent transmembrane molecule amyloid precursor
protein during the amyloidogenic pathway. The gene
coding for amyloid precursor protein has been identi-
fied on chromosome 21. Amyloid precursor protein
mRNA increased over 200-% and 150-% in the pe  -
numbra and core ischemic parts, respectively, on the
fourth day after focal brain ischemia and remained high
through the seventh day of the ischemic insult. This
study suggests that the focal brain ischemic insult
enhances amyloid precursor protein mRNA expression
and may contribute to the progression of cognitive
impairment after ischemic injury [65]. After focal is -
chemia, the Kunitz protease inhibitor-bearing isoforms
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were increased, whereas amyloid precursor protein 695
that lacks Kunitz protease inhibitor domain was de -
creased. These results show that focal ischemia alters
Kunitz protease inhibitor-amyloid precursor protein/
amyloid precursor protein 695 ratios in cerebral cortex
and this shift in amyloid precursor protein isoforms
could be related to neurodegeneration and/or activa-
tion of astrocytes during the ischemic process [27].

In persistent focal ischemia, amyloid precursor
protein mRNA species that contain a Kunitz-type pro-
tease inhibitor domain were induced in the rat cortex
from 1 to 21 days after the injury with maximum at 
4 days, while total amounts of amyloid precursor pro-
tein mRNA did not change. These results suggest a se -
lective role of amyloid precursor protein species that
contain the Kunitz protease inhibitor domain in focal
brain ischemia [1]. At 7 days postischemia, amyloid pre-
cursor protein 770 and amyloid precursor protein 751
mRNAs were induced in the infarct core and in a thin
perifocal zone [30].

Brain samples from ischemic core and penumbra
of cortex at one hour and 1 day following focal ische -
mia with ovariectomy were investigated for amyloid 
precursor protein mRNA. At one hour after ischemia,
rats exhibited a significant increase in amyloid precursor
protein mRNA in the penumbra and core. Estrogen treat-
ment reduced the amyloid precursor protein mRNA
over-expression in these two areas [64]. These results
demonstrate that estrogen may have an important role
in reducing the over-expression of amyloid precursor
protein mRNA following transient focal ischemia.
Thus, these studies suggest a profound effect of estro-
gen on brain that may be able to interrupt a vicious cycle
of ischemia and neurodegeneration [64]. 

PPrreesseenniilliinnss  

The protein products of the genes on chromosomes
14 and 1 were subsequently termed presenilin 1 and
presenilin 2, respectively. Information regarding the
genetic factors and environmental conditions that influ-
ence presenilins gene expression is essential for the
elucidation of its pathophysiological role in Alzheimer’s
disease. In one paper, the changes of presenilin 1 mRNA
expression in the gerbil hippocampus following com-
plete brain ischemia were studied [67]. After ischemia,
the selective induction of presenilin 1 gene in neurons
of CA3 and dentate gyrus was observed, which might
be related to the resistant areas after ischemia. In this
investigation, presenilin 1 mRNA was induced at 1 day

postischemia and reached the greatest levels at day
3 in presented regions. These observations suggest that
the expression of presenilin 1 mRNA may be associated
with some response of nerve cells injured by ischemic
insult. In another study, the induction of mRNA for pre-
senilins was examined in the rat hippocampus, cortex,
striatum and cerebellum in an experimental model of
transient focal brain ischemia [40]. The levels of pre-
senilins mRNA exhibited the maximal expression in the
hippocampus and cortex regions of plaque develop -
ment in Alzheimer’s disease while the presenilin 1 and
2 genes content in cerebellum and striatum, regions
unaffected by Alzheimer’s disease, presented gener-
ally no signi ficant increase. The greatest expression for
presenilins mRNA was observed in the cortex. Genes
for presenilins in the hippocampus and striatum show
a pattern of expression similar to that seen in the cor-
tex but with smaller intensities. Generally, the expres-
sions were larger on the contralateral side to the focal
ischemic injury. This difference may reflect a loss of brain
cells expressing presenilin genes on the ipsilateral side.

AAppoolliippoopprrootteeiinnss  

The apolipoprotein E gene is on chromosome 19.
Since  β-amyloid peptide binds with high affinity to 
apo lipoprotein E it has been suggested that apolipopro-
tein E may promote formation of  β-amyloid peptide
fibrils by acting as a ‘pathological chaperone’ [74]. In
an experimental study on gerbil, there was an increase
in astrocytic apolipoprotein E mRNA with the levels
being the highest 7 days postischemia. This suggests
that neuronal injury or insult results in the induction
of certa in genes in the surrounding reactive astrocytes 
and these proteins may contribute to post injury amy-
loidogenesis [2]. Apolipoprotein E mRNA expression 
in glial cells but not in neurons was seen in ischemic
penumbra with a peak at 21 days. In core, marked apo -
lipoprotein E mRNA expression was observed in ma cro-
 phages [23]. Apolipoprotein E immunoreactivity was 
recognized in astrocytes and neurons 3-14 days after
transient focal cerebral ischemia. Apolipoprotein E
was also detected in macrophages in the ischemic core.
In contrast, apolipoprotein E mRNA was expressed in
astrocytes and macrophages but not in neurons. These
results suggest that neuronal apolipoprotein E was not
synthesized in neurons but derived from astrocytes 
[39]. Recent findings support this observation that
astroglial cells regulate apolipoprotein E expression in
neurons [16].
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Some data present an increased expression in astro-
cytes of apolipoprotein J which provides neuroprotec-
tion against brain ischemia as an antistress protein
chaperone [72]. Increased expression of clusterin
mRNA was noted in permanent focal cerebral ischemia
in the mouse. Clusterin mRNA was located in the peri -
focal area. Reactive astrocytes within the cortex were
found to be strongly immunoreactive for clusterin. It
was concluded that the local expression of apolipopro-
tein J mRNA might contribute to the inflammation, rep-
resenting an important process in secondary injury
mechanisms after focal and global brain ischemia
[62,68]. The severe ischemic insult leads primarily to
necrotic neuronal death and shows very little, if any,
clusterin mRNA. However, following the moderate insult,
there was a dramatic time-dependent accumulation of
clusterin in neurons of the CA1 and CA2 sector in the
hippocampus and cortical layers 3-5 regions undergoing
delayed neuronal death. Clusterin mRNA expression,
in contrast to neuronal protein accumulation, appear -
ed to be glial in origin with increases in mRNA in and
around the hippocampus fissure and only a weak sig-
nal over the CA1 and CA2 pyramidal cell layer. These
results support the theory that clusterin is synthesized
in the astrocytes, secreted and then taken up by dying
neurons [39]. Clusterin was accumulating in neurons
destined to die by programmed cell death. However,
clusterin expression suggests that clusterin production
was a result of the selective delayed neuronal death
rather than being involved in the neurochemical cas-
cade of events that cause it [69].

αα--,,    ββ--  aanndd    γγ--sseeccrreettaasseess  

The amyloid precursor protein is cleaved by  α-secre -
tase and it is a non-amyloidogenic pathway.  α-Secre-
tase displays characteristics of certain membrane-teth-
ered metalloproteases. Further,  α-secretase activi ty has
both constitutive and inducible components. The con-
stitutive activity has not been identified yet, but in du -
cible  α-secretase activity seems to be under the con-
trol of protein kinase C. Two members of a disinte grin
and metalloprotease (ADAM) family, tumour nec ro sis
factor-α  converting enzyme (TACE or ADAM-17) and
ADAM-10 also seem to process the amyloid precursor
protein in an  α-secretase-like manner. Experimental brain
ischemia results in the downregulation of mRNA of
α-secretase and decreases its activity [38,76]. In the 
second pathway, amyloidogenic precursor is cleaved 
by β- and  γ-secretases to form soluble  β-amy loid pep-

tide. In 1999,  β-secretase was identified as a protein
with homology to the pepsin family of aspartyl proteases.
The gene for  β-secretase is located on chromosome 11.
β-Secretase mRNA is highly expressed in the brain and
it is also found in a variety of human tissues. The intra-
cellular localization of β-se  cretase protein is expressed
primarily in the Golgi apparatus and in endosomes,
whereas a small amount of it can be detected in endo-
plasmic reticulum, lysosomes and the plasma mem-
brane. Zhang et al. [80] found that the human and ani-
mal  β-secretase gene promoters contain the hypoxia
inducible factor 1 binding sites and the hypoxia respon-
sive element site is physiologically functional in the 
transcriptional regulation of  β-secretase gene expres-
sion in vitro and in vivo. The production of β-amyloid
peptide increases in the brain after ischemia, which
impairs the memory [76]. Recent data have shown that
ex  perimental ischemic brain injury stimulates the ex -
pression, production and activity of Alzheimer’s disease
β-secretase in animal brain parenchyma [7,12,13,70].
Another study showed for the first time the alteration
in mRNA expression of three amyloid precursor protein
metabolism-related genes: β-secretase (BACE1), cathep-
sin B and glutaminyl cyclase mRNA, whose expression
increased in the hippocampus and cortex quickly after
ischemia-recirculation [78]. In the following month, the
BACE1 mRNA level dropped subsequently but was 
still above the control level during the whole period of
observation. Another result has shown that full-length
presenilin interacts with immature  β-secretase. This ob -
servation suggests that presenilin regulates  β-secre-
tase activity via direct interaction and facilitated traf-
ficking of β-secretase to different compartments of cells
[18]. Additionally, presenilin is involved in the process-
ing of amyloid precursor protein to produce  β-amyloid
peptide through the  γ-secretase complex [75].  γ-sec-
retase has pharmacological characteristics of an aspar -
tyl protease and is a high molecular weight complex 
that consists of at least four components: presenilin-1
(PEN-1), nicastrin (Nct), anterior pharynx-defective-1
(APH-1) and presenilin enhancer-2 (PEN-2). It is known
that isolated autophagic vacuoles contain the highest
γ-secretase activity and ischemia can activate macroau-
tophagy (autophagy) in the brain, resulting in the incre -
ase of autophagic vacuoles. Therefore, we propose that
ischemia may accelerate  β-amyloid peptide production
through activating autophagy. Presenilin, which is ex -
pressed in the ischemic brain [40,67], is involved in
ischemic  β-amyloid peptide generation by  γ-secretase
complex [54]. These findings will help understand the
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gradual creepy postischemic damage in ischemic neu-
rons structures, delayed  β-amyloid peptide deposition
and long-term neurovascular pathogenesis of Alzheimer-
type [49].

Intracellular C-terminal of amyloid
precursor protein domain (AICD)
generation

A primary trigger in brain ischemia, which initia-
tes amyloid precursor protein cleavage is ischemic 
pro cess. The first proteolysis is performed by either 
α- or β-sec retase that produce large soluble N-termi-
nal domains such as: sAPPα  or sAPPβ. These fragments
are released into the extracellular space. Remaining 
C-terminal fragments are bound with a membrane and
called, C-terminal fragment 83 or 99 (CTF83/CTFα or
CTF99/CTFβ), respectively. The second proteolysis oc -
curs in the intramembrane area by  γ-secretase, which,
depending on where the first proteolysis was made,
finally releases either the  β-amyloid peptide or p3 frag-
ment. This action seems to be largely nonselective,
occurring in at least 3 different sites of the amyloid 
precursor protein like V636, A638 and L645 (ε-cleav-
age site) [60,79]. The final main products are  β-amy-
loid peptide 40 or 42 and an intracellular 50 aa C-ter-
minal of amyloid precursor protein domain (5kDa)
(AICD) [42]. AICD is extremely labile and can be further
degraded by the insulin degrading enzyme or protea-
some. AICD, with binding proteins initiating a signal
cascade, subsequently migrates to the cell nucleus to
become a component of a transcriptional complex. 
The adaptor protein FE65 rescues the AICD from rap-
id degradation. Amyloid precursor protein intracellu-
lar domain may well control transcription of genes by
shaping a transcriptionally dynamic complex with
the adaptor protein Fe65 and the histone acetyltrans-
ferase Tip60 [11]. The equilibrium between non-amy-
loidogenic and amyloidogenic processes is vital, since
very small alte rations in this fine balance can begin rap-
id mechanisms leading to the generation and deposi-
tion of  β-amyloid peptide in brains of Alzheimer’s dis-
ease sufferers. 

Functional consequences following
experimental brain ischemia

In addition to pathological ischemic alterations, neu-
robehavioral functional changes have been observed,
too [8,28,52]. Brain ischemia does not result in long-last-
ing neurological deficits in animals [8]. Spontaneous par-

tial or complete recovery of the sensorimotor function
has been observed following ischemic brain lesions
[28,55,77]. After brain ischemia, a locomotor hyperac-
tivity has been noted during 7 days [24,31] as in Alz -
heimer’s disease patients. The hyperactivity was asso-
ciated with a neuronal loss in hippocampus [31].
Longer ischemia and longer locomotor hyperactivity,
which is positive, correlated with increased hippo -
campal neuronal changes/deaths [8,49]. Following
brain ischemia, an impairment in habituation up to 
6 months was observed, as revealed by an increase in
the exploration time [10,37]. Ischemic brain injury
results in reference and working memory deficits
[14,28,29]. Moreover, ischemic brain injury in experi-
mental animals leads to progression of spatial mem-
ory for 1 year and more [9,25,28]. Cognitive impairment
progression has been presented consistently during recir-
culation time [25,28,59]. Moreover, data from repetitive
brain ischemia in gerbils have shown persistent loco-
motor hyperactivity, reduced anxiety and severe cog-
nitive deficits [20]. These abnormalities were connect -
ed with significant brain atrophy [19,44,45,48], associated
with a diffuse neuronal loss in the brain cortex, caudate
nucleus and in CA1 sector of hippocampus [20,48,49]
and in the amygdala and perirhinal cortex [5]. Alertness
and sensorimotor capacities are affected for 1-2 days,
whereas the deficits in learning and memory seem to
be rather long-lasting [28]. Taken together, supporting
evidence from both experimental and clinical studies
indicating that the progressive cognitive activities de -
cline, could not be explained only by the direct contri-
bution of the primary ischemic brain injury, but rather
a progressive consequence of the additive effects of the
ischemic lesions, Alzheimer’s factors and aging [22,
32,52,55]. These data suggest that focal ischemia
enhances amyloid precursor protein mRNA expression,
which may contribute to the progression of cognitive
impairment in postischemic injury [64,65]. Finally, 
the production of  β-amyloid peptide in brain after
ischemia increases and impairs the memory [76].
Abnormal  α-synuclein deposition might completely dis-
rupt synaptic activity, resulting in cognitive disturbance
[17]. The functional alterations were shown within 
the areas of selective vulnerability to ischemia neurons
and they precede neurodegeneration. Additionally,
other regions of brain, which are devoid of ischemic neu-
ronal injury, display functional abnormalities. These
changes seem to be mainly due to synaptic changes
because of connections of neuronal cells within sectors
with ischemically damaged and dead neurons [17].
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Conclusions

The typical elements of Alzheimer’s disease patho-
logy in ischemic brain are abnormal induction of Alzhei-
mer’s disease-associated genes and proteins, various
kinds of amyloid plaques, and neuronal death with
inflammation in specific brain fields as hippocampus
with the final development of dementia. To date caus-
es of plaques have been taken as heterogeneous and
neuronal death as a consequence of neurotoxic fu-
tures of  β-amyloid peptide. New data are suggesting
that brain ischemia triggers parallel induction of
Alzheimer type genes and neuronal death with sub-
sequent plaques development and detected hippo -
campus and brain atrophy [19,44,45,48], which is im -
portant in final dementia formation [28]. The data on
Alzheimer’s genotype and phenotype in brain ischemia
underpin directly the ischemic hypothesis of Alzheimer’s
disease aetiology. In summary, we presented good
ischemic models for the investigation of Alzheimer’s
disease. By use of brain ischemia models, we may 
elucidate the neuropathology of Alzheimer’s disease.
Pre sent knowledge regarding the induction of genes,
neuropathophysiology and neuropathology of brain is -
chemia and Alzheimer’s disease indicates that the same
processes contribute to neuronal death, amyloid ac-
cumulation, tau protein hyperphosphorylation and 
brain parenchyma disintegration with full-blown
dementia [6,50,71].
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