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Increased vesicular and vacuolar transendothelial transport
in traumatic human brain oedema. A review
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A b s t r a c t

The endothelial vacuolar and vesicular transports in traumatic human brain oedema have been reviewed and com-
pared with experimental brain oedema in order to establish their role in both oedema formation and oedema reso-
lution. Normal or “non-activated” and “activated” capillaries are found. The activated capillaries showed predominantly
an enhanced abluminally orientated vesicular transport by means of small, medium and large uncoated and clathrin
coated vesicles, as well as the presence of endothelial tubular structures. Activation of the endothelial nuclear zone
is featured by the increased amount of micropinocytotic vesicles. Vesicles internalizing to the hypertrophic Golgi com-
plex, lysosomes and multivesicular bodies are observed. The protein vacuolar transport is predominant in most cor-
tical capillaries. A wide spectrum of endothelial cell mechanisms is observed increasing the vesicular and vacuolar trans-
port, such as deep invaginations of the luminal surface, large coated vesicles, tubular structures, and transient and
incomplete transendothelial channels formed either by chained plasmalemmal vesicles or elongated protein-containing
vacuoles. Uncoated vesicles are seen surrounding lysosomes. Vesicular transport might be discriminated between ablu-
minally orientated or transendothelial transport (oedema formation) and intraendothelial transport (oedema resolu-
tion) directed towards cell lysosomes to be degraded by lysosomal enzymes. The transendothelial passage via large
vacuoles is mainly caused by macromolecular protein transport.
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Introduction

Increased endothelial cell vesiculation has been ear-
lier reported in anoxic-ischaemic lesions [30,31,36],
experimental cerebral infarction [3], ionizing radiation
[20], brain-stem lesion of thiamine-deficient rats [44],
following intraventricular perfusion with serotonin, nor-
epinephrine and cyclic AMP [63], ultraviolet irradiation

[49], experimental seizures [46], hypertension [28,47,59],
brain trauma [1,6,12-16,18,21,31,47,48], congenital hydro-
cephalus [10,17], and brain tumours [23,50,53-55].

The hypothesis of “vesicular transport” stands as a ge -
nerally accepted process, explaining in particular macro-
molecular transport in capillaries [2]. The most convincing
evidence to date for a vesicular transport of protein across
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reactive cerebral capillaries was earlier provided by 
Beggs and Waggener [1], who found that upon repro-
ducible contusion of the spinal cord in cats, horse radish
peroxidase escaped from the vessels by means of pleo-
morphic vesicles, tubules and large vacuoles.

The orientation of pinocytotic vesicles correlating with
the stage of the oedematous process was first made by
Wagner et al. [61], and reproduced by Cervós-Navarro
et al. [19]. Sazaki et al. [49] reported a typical orienta-
tion of the micropinocytotic vesicles depending upon 
the stage of the oedematous process: in the early stages,
they are found preferably at the luminal side of endo -
thelial cells, and later on they predominate at the ablu-
minal endothelial cell membrane. Ferszt et al. [29] report-
ed diffuse macro- and micropinocytotic activity in focal
brain oedema due to ultraviolet irradiation as tissue water
content reaches maximum values. 

Casley-Smith and Carter [4] found that large vac-
uoles in inflamed endothelium do indeed transport
macromolecules across the cells. In addition, large endo -
thelial vacuoles and transendothelial vacuolar trans-
port have been described in a large variety of patho-
logical entities, such as brain tumours [50,53-55],
anoxic-ischaemic lesions [6,8-10,13,17,21,27,30,33,34,
40,41,45], injections of Gram-negative endotoxin [24],
lead encephalopathy [39], experimental allergic ence -
phalomyelitis [35], and human brain oedema [6,8].
These studies show that the formation of endothelial
vacuoles could be interpreted as opening of the
endothelial ‘pore system’ induced by different patho-
logical conditions [6]. Lossinsky et al. [42,43] studied
the vesicular and canalicular transport structures 
in endothelial cells after crude leptomeningeal dam-
age in mice, and in cold lesion injury in cats. Castejón 
[6-9] described an increased vesicular and vacuolar
transendothelial transport, and formation of trans -
endothelial channels in endothelial cells and pericytes
in human traumatic and complicated brain injuries. 
Shibata et al. [50] reported increased endothelial
pinocytotic vesicle formation in human brain tumours.
Claudio et al. [25] found an increased endothelial cell
vesicular transport in rat experimental autoimmune
encepha lomyelitis. According to these authors, immuno-
gold staining of endogenous albumin demonstrated
the presence of albumin in cytoplasmic vesicles and
in channel-like tubular structures adjacent to endothe-
lial cell junctions. These results indicated that there 
is a role for vesicles in transendothelial cell transport
and oedema formation in animals with experimental
autoimmune encephalomyelitis. Takano et al. [53] ob -

served an increased vesicular transport in human glio -
ma capillaries. Kato et al. [38] demonstrated increased
numbers of vesicles and vacuoles in endothelial brain
capillaries in cerebral oedema from fulminant hepa tic
failure.  

Zumkeller and Dietz [65] described an increased pro-
tein vesicular transport in rats after treatment with
nimodipine. Cicciarello et al. [26] found enhanced vesic-
ular transport of horseradish peroxidase in an exper-
imental model of whole brain after irradiation. Plateel
et al. [45] examined the increased permeability of albu-
min after hypoxia, attributed to non-specific vesicu-
lar transport in a cell culture model of brain barrier.

Hofman et al. [37] showed an increased vascular per-
meability for plasma proteins in vivo induced by vas-
cular endothelial growth factor-A (VEGF) in blood-re tinal
barrier endothelium predominantly caused by a mech-
anism involving active trans-endothelial transport via
pinocytotic vesicles, and not by formation of en dothelial
fenestrations or vesiculo-vacuolar organelles.

Castejón et al. [15] reported an increased vesicu-
lar and vacuolar transendothelial transport in two
patients with post-traumatic seizures. Lossinsky et al.
[42] examined the vesicular and canalicular transport
structures in the injured mammalian blood-brain bar-
rier. Lossinsky and Shivers [43] reviewed in detail the
structural pathways for macromolecular and endothe-
lial cell transport during inflammatory conditions and
brain injuries. Cipolla et al. [27] found increased api-
cal and basolateral pinocytosis in cerebral endotheli-
um during ischaemia/reperfusion, and elevated
intravascular pressure. Castejón [10,17] described an
increased vesicular and vacuolar transport in cortical
capillaries from parietal and frontal cortex of patients
with congenital hydrocephalus and Arnold-Chiari mal-
formation.

Vesicular and vacuolar transport is a highly dyna mic
process currently studied in experimental animal works
with electron dense tracers. The study of endothelial
vesicular and vacuolar transport in human cortical biop-
sies is obviously limited for many reasons, such as: 
a) ethical principles that limit the use of electron den -
se probes in vivo, b) samples randomly obtained, c) ultra-
thin sections giving isolated images of endothelial cell
substructures, d) great variability of the nature of trau-
matic agents and impact energy, and the patient’s age
and state of health.

In the present review we describe the morphological
evidence of increased vesicular and vacuolar transports
induced by human traumatic brain injuries. Emphasis
will be placed on the role played by vesicular and vac-
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uolar transports in oedema formation and oedema res-
olution. The variety of endothelial cell mechanisms
observed in severe vasogenic brain oedema also are
analysed.

Vesicular and vacuolar transendothelial
transport as morphological signs 
of increased cerebrovascular permeability

RReessttiinngg  ccoorrttiiccaall  ccaappiillllaarriieess

In traumatic moderate brain oedema, some gray mat-
ter cortical capillaries exhibit a normal appearance with
an inactive, resting endothelial cytoplasmic peripheral
zone, characterized by straight, almost smooth, luminal
plasma membrane, without pseu dopodic expansions and
scarce micro- and macropinocytotic activity. In these nor-
mal capillaries, the basement membrane appears as
a compact structure formed by filaments embedded 
in a homogeneous matrix. Only some free and mem-
brane-bound clathrin-coated vesicles are encountered.
The endothelial junctions are structurally intact, and 
the astrocytary glial end-feet appear intimately applied
to the basement membrane [6,8,11]. These “non-leaky”
capillaries are not activated by the mechanical injury
exerted by the intensity of brain trauma.

AAccttiivvaatteedd  ccoorrttiiccaall  ccaappiillllaarriieess  

Other capillaries are activated by the traumatic
injury and show an endothelial cell luminal surface
activity, exhibiting abundant luminal microvilli, pres-
ence of coated vesicles, remarkable orientation of
numerous abluminal uncoated pinocytotic vesicles
toward the capillary basement membrane (Fig. 1), and
a lesser amount of caveolae intracellularis or ‘pits’ con-
nected to the luminal endothelial surface, suggest -
ing abluminally orientated vesicular transport [6,8]. 
The non-leaky segments of capillaries contain “immo-
bile” endothelial vesicles [58], which are activated in
the leaky segments by the impact energy.

Chained pinocytotic vesicles fused with each other
and with tubular invaginations to form shuttle vesi-
cles or incomplete transient transendothelial channels
[7,42,43]. In addition, large spheroid or elongated vac-
uoles, containing hematogenous oedema fluid ap-
pear free in the endothelial cytoplasm (Figs. 2 and 3).
These vacuoles discharge their content directly into the
basement membrane or by means of plasmalemmal
vesicles. The basement membrane appears swollen,
and abundant proteinaceous oedema fluid is seen sep-
arating the basement membrane from the perivascular

glycogen-rich and glycogen depleted astroglial end-feet
[11,14]. The latter are remarkably swollen and their lim-
iting membranes appear fragmented. 

Some actin-like filaments are attached to the va -
cuole limiting membrane, suggesting that the cytoske -
leton is involved in the transendothelial movement 
of these vacuoles [8]. In normal capillaries the small
vesicular and vacuolar transport is a random process
powered by Brownian motion [4], but in the case of an
enhanced cerebrovascular permeability, the partici-
pation of cytoskeletal structures is required to speed
up the vacuolar and vesicular transport. A detailed study
of the longitudinal sections of the capillary wall show
that, in addition to the endothelial peripheral zone, the
nuclear and organelle endothelial zones (Fig. 4) also

FFiigg..  11..  Brain trauma. Subdural haematoma. Left
parietal cortex. Cross section of a traumatically
activated cortical capillary showing prominent
protrusion of pseudopodic endothelial cell (EC)
expansions (long arrows) engulfing the protei -
na ceous oedema fluid from the capillary lumen
(L). The apparently normal basement membrane
(short arrows), the enclosed pericital cytoplasm
(P), and the astrocytic perivascular end-feet (A)
also are seen. The asterisk labels the enlarged
perivascular space. 
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exhibit surface activity, with shallow and deep invagi-
nations of luminal plasma membrane to form protein-
transporting vacuoles [6,8]. Deep invaginations of en -
dothelia cell luminal membranes were also reported
by Lossinski et al. [42] in experimental models of brain

injury. The endothelial cell nuclear zone in normal cap-
illaries shows a little or no micropinocytotic activity
[6,51,52].

Vacuoles and vesicles actually participating in the
transendothelial transport toward the basement me -
mbrane could be distinguished from those internaliz -
ing to some cell organelles, such as multivesicular 
bodies, Golgi apparatus and lysosomes (Figs. 5 and 6).
The Golgi complex appears hypertrophic with dilat-
ed endoplasmic sacs and Golgi vacuoles. Deep inva -
ginations of the luminal surface are formed in the vicin-
ity of the Golgi formation phase, and numerous
clathrin-coated and uncoated vesicles are observed in
this area [8]. 

FFiigg..  22..  Brain trauma. Right epidural haematoma.
Right temporal cortex. Endothelial peripheral
cytoplasm (EC) showing predominant vesicular
transport (arrowheads) polarized toward the
swollen basement membrane (BM). A caveolae
intracellularis (long  arrow) and fused micro -
pinocytotic vesicles (double head arrow) are
seen. The swollen pericyte (P) and basement
membrane (BM) are noted. The limiting mem-
brane of astrocytic (A) perivascular end-foot
appears irregularly applied to the basement
membrane outer surface.

FFiigg..  33..  Brain trauma. Subdural haematoma. Left
parietal cortex. Endothelial cell peripheral zone
showing large round (V) and elongated (long
arrow) vacuoles. An erithrocyte (E), the swollen
and vacuolated basement membrane, the oede-
matous astrocytic perivascular end-feet (A),
and the distended extracellular space (ES) also
are distinguished. The short arrows indicate the
astrocytic end-feet gap junction.
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Golgi vesicles are the structural vectors of the recy-
cled membranes [51,52]. Presumably a considerable
amount of Golgi complex-derived membrane is insert-
ed into the endothelial luminal plasmalemma to pro-
vide new membranes for the increased vesicular and
vacuolar transport. This sustained over-function might
induce Golgi complex hypertrophy [8,16].

Some pinocytotic vesicles are found surrounding
dense cored vesicles and small lysosomes, suggesting
that some amount of plasma protein is transported by
plasmalemmal vesicles towards the lysosomes to be

degraded by lysosomal enzymes, as an endothelial cell
mechanism of oedema resolution [8,58]. At the Golgi
region, uncoated and coated pinocytotic vesicles and
microtubules appear topographically related to lyso-

FFiigg..  44..  Brain trauma. Rigt parieto-temporal sub-
dural haematoma. Endothelial cell (EC) organelle
and peripheral zones showing the formation of
pinocytotic and clathrin-coated vesicles (arrow-
heads). A deep invagination of the endothelial
luminal membrane (long arrow) ends in a micro -
pinocytotic vesicle. Note the swollen mitochon-
dria (M), the rough endoplasmic reticulum (ER),
and the perivascular astrocytic end-foot (A) dis-
sociated (arrow) from the thickened and rarefact-
ed basement membrane (BM).

FFiigg..  55..  Brain trauma. Contusion of frontal region.
Right frontal cortex. Deep invaginations of the
endothelial cell luminal membrane (long arrows)
are formed at the endothelial peripheral cyto-
plasm. A caveolae intracellularis (arrowhead) is
observed at the endothelial cell luminal membra -
ne. Some coated and uncoated vesicles and vac-
uoles are internalized (small arrows) towards the
hypertrophic Golgi complex (GC). Note that other
endothelial vacuoles (asterisks) follow a transca -
pillary route toward the basement membrane
(BM). Some vesicles appear surrounding a multi-
vesicular body (MB). Note also the hydropic
changes of Golgi endoplasmic sacs and vacuoles.
The capillary lumen (L) also is noted. 
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somes (Fig. 6). Coated pits and clathrin-coated vesi-
cles are also seen. 

These electron microscopic findings suggest that
endothelial vesicular transport can be discriminated
between abluminally orientated transendothelial
transport toward the capillary basement membrane
inducing oedema formation, and cell organelle orien-
tated intraendothelial vesicular transport directed
towards Golgi complex, lysosomes and multivesicular
bodies for oedema resolution [8]. Van Deurs [58] has
also shown evidence of transport of exogenous mate-
rial to lysosomes by uncoated endothelial vesicles to
be degraded by hydrolytic enzymes. 

Numerous free and abluminal membrane-bound
pinocytotic vesicles and vacuoles are also found dis-
charging their content into the capillary basement
membrane, suggesting the orientated increased pino -

cytotic and vacuolar transport toward the tissue
front (Fig. 7). These capillaries display notably oede-
matous pericytes also with an increased vesicular and
vacuolar transport [9,18], and swollen glycogen-rich 
and glycogen-depleted astrocytic perivascular end-feet
[14], indicating the route followed by the hematoge-
nous oedema fluid.

Some endothelial vacuoles are formed by a well-
known mechanism of emission of microvilli, which ini-
tially projects towards the capillary lumen and afterwards
refolds over the neighbouring endothelial luminal sur-
face, or either by interdigitation of a pseudopodic expan-
sion and a microvillus [5,6] (Fig. 8).

In relationship to the identification of endothelial
vacuoles, much confusion has been caused in electron
microscopy by ultrathin sections of simple indentations
of endothelial cell plasma membrane of peripheral cyto-
plasmic zone, by phagocytosis, and by dilated endo-
plasmic reticulum [5]. In our studies we have clearly
differentiated between these possibilities, and con-
sidered that unidirectional transendothelial passage
of true protein-containing vacuoles is primarily con-
cerned with oedema formation [6,8]. 

FFiigg..  66.. Brain trauma. Epidural haematoma. Right
temporal cortex. Endothelial peripheral cyto-
plasm (EC) showing  a clathrin-coated vesicle
(arrowhead) and microtubules (short arrows) in
topographic relationship with a lysosome (L). 
A dilated curved basement membrane bifurca-
tion (asterisks) appears in a sublemmal location.
The pericyte cell (P) and the swollen basement
membrane (BM) also are observed. 

FFiigg..  77.. Brain trauma. Fronto-parieto-occipital sub-
dural haematoma. Left paritetal cortex. Activat-
ed endothelial cytoplasm of nuclear (N) and pe -
ripheral zones showing increased vacuolar and
vesicular transports. The large arrows indicate
the direction of vacuolar transcapillary passage.
The dilated rough endoplasmic reticulum also is
vacuolated (asterisks). There is a clear contralu-
minal orientation of micropinocytotic transport
(arrowheads) since the micropinocitotic vesicles
appear discharging their content to the swol-
len basement membrane (BM). Note the disrupt -
ed limiting membrane (short arrows) of the swol -
len perivascular astrocytic end-foot (A).
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In some capillaries, the cytoplasm of the endothe-
lial peripheral zone becomes so attenuated that
a large micropinocytotic vesicle and vacuoles can func-
tion almost as incomplete and transient transendothe-
lial channels [6] (Fig. 9). 

Earlier studies on experimental brain trauma have
demonstrated that protein leakage occurs as early 
as three (3) minutes after brain injury [48]. In addition,
plasma protein extravasation has been reported ten
minutes after impact injury in spinal gray matter
microvasculature [31]. In traumatic human brain in juries
we have shown evidence that there is an accumula-
tion of proteinaceous oedema fluid in the interspace

between the basement membrane and the astrocytary
perivascular end-feet twenty four (24) hours after
a severe brain injury [8,11-13]. Extravasation of pro-
teinaceous oedema fluid in moderately oedematous
regions is mainly due to the enhanced vesicular and
vacuolar transport because most tight endothelial junc-
tions are intact and structurally closed [8,22]. 

FFiigg..  88..  Brain trauma. Parieto-temporal subdural
haematoma. Left parietal cortex. Endothelial cell
peripheral zone showing emission of two micro -
villi (arrows) entrapping haematogenous oedema
fluid, and forming protein-containing vacuoles,
as the most frequent mechanism of oedema
formation. An erythrocyte (E), the basement
mem brane (BM), the swollen astrocytic end-foot
(A), and the enlarged extracellular space (aster-
isks) also are seen. FFiigg..  99..  Brain trauma. Subdural haematoma. 

The attenuated  endothelial peripheral zone (EC)
with a large micropinocytotic vesicle (small
arrow) and vacuoles (V). An erythrocyte (E), 
the basement membrane (BM), the endoplas-
mic reticulum (ER), the swollen astrocytic end-
foot (A), the vessel lumina (L).
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Concluding remarks 

The endothelial vacuolar and vesicular transports
have been studied in traumatic brain injuries in order
to establish their role in both oedema formation and
oedema resolution. Normal or “non-activated” and
“activated” capillaries are found. The activated capil-
laries show predominantly an enhanced abluminally
orientated vesicular transport by means of small, medi-
um and large uncoated and clathrin-coated vesicles,
as well as the presence of endothelial tubular struc-
tures. Vesicles internalizing to the hypertrophic Golgi
complex, lysosomes and multivesicular bodies are
observed for oedema resolution. The vacuolar trans-
port is predominant in most cortical capillaries. 
The basic endothelial cell mechanisms found in com-
plicated human brain injuries are deep invaginations
of luminal surface, formation of large coated vesicles,
tubular structures, and transient and incomplete
trans endothelial channels formed either by chained
plasmalemmal vesicles or elongated protein-contain-
ing vacuoles. Uncoated vesicles are seen surrounding
lysosomes. The endothelial vesicular transport can be
discriminated between abluminally orientated or
transendothelial transport (oedema formation), and
intraendothelial transport (oedema resolution) direct-
ed towards multivesicular bodies and lysosomes. 
The transendothelial passage via large vacuoles is main-
ly due to protein transport. Most endothelial junctions
examined in moderate oedematous regions are struc-
turally intact.
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