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Heterogeneity of local tissue microenvironment influences
differentiation of oligodendroglial progenitors
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A b s t r a c t

Glial NG2-positive precursors are considered as suitable candidates for the cell-based therapies for disorders charac-
terised by depletion of functional oligodendrocytes and ongoing hypo/demyelination. They are known to be among
the first cells to react to CNS dysfunction. Their fate could be however considerably affected by the heterogeneity 
of the local tissue microenvironment. To address this issue, a comparison of mRNA expression of the crucial trophic
factors was carried out in organotypic slices from the hippocampus (as a well-recognised neurogenic area) and from
the spinal cord (where gliogenic signals are assumed to predominate). The molecular analysis revealed substantial
differences in the mRNA levels of main factors governing cell biology. Additionally, the ability of these two microenvi-
ronments to promote the astrocytic differentiation of oligodendroglial progenitors was assessed as well. While the GFAP+

cells constituted the very minor population in control experiments, their amount increased significantly during culturing
in the medium continuously conditioned by either hippocampal or the spinal cord slices. The observed susceptibility
to the influence of the local extracellular signals might efficiently contribute to the reported glial scar formation. It pre-
sumably could also modify the fate of the endogenous or transplanted precursors, what should be taken into consideration
in cell-based therapies. 
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Introduction

Oligodendrocyte progenitors (OPCs) are NG2-pos-
itive cells abundantly populating the young and adult
central nervous system (CNS). They are capable of mye -
linogenesis, but they are also among the first cells to
react to CNS dysfunction [32]. They are known to be
affected in many inherited [15,44,54] and acquired dis-
orders, both acute like spinal cord injury and brain trau-
ma [1,6,49] and chronic like intoxication or im muno-

logical diseases [39]. The resulting depletion of functio -
nal oligodendrocytes accompanied by ongoing hypo/
demyelination leads to an urgent need for cell replace-
ment therapies based on either recruitment of endoge-
nous progenitors or cell transplantation.

Endogenous OPCs are generated during perinatal
gliogenesis and remain scattered across white and grey
matter in large quantities [26,36,52]. In adult CNS, they
could also be derived from neural stem cells inhabit-
ing the subventricular zone (SVZ) [10,28] and the hilus
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of the dentate gyrus (DG), a part of the hippocampal
non-neurogenic area [23]. Thus, there is a natural and
abundant reservoir of cells existing within CNS, which
could be mobilized for neurorepair purposes. In the case
of inherited diseases leading to oligodendrocyte mal-
function and myelin disturbances, the cell transplan-
tation would presumably be the best solution. How-
ever, the fate of both recruited endogenous precursors
and the transplanted cells is considerably affected by
the local tissue microenvironment, composed of a cock-
tail of active compounds like trophic factors, cytokines,
morphogenes and extracellular matrix components
[18,22,40]. Over the past decade, the neurogenic po -
tential of glia-committed precursors has been inten-
sively investigated. In our previous reports, the abili-
ty of the neonatal OPCs to express the spectrum of
pro-neuronal markers in the microenvironment created
by hippocampal slices was shown. A fraction of the
labelled OPCs seeded onto the slices, which migrat-
ed and integrated to the tissue, adopted the neuronal
phenotype [45]. The results have also revealed that the
neurogenic effect could be exerted by paracrine sig-
nalling. This points to the presence of soluble active
compounds governing cell commitment. 

Our observations together with reports coming from
other laboratories lead to a question concerning dif-
ferences in the composition of nervous tissue derived
from distinct CNS regions [2,34,46,50]. To address this
issue, organotypic slices from the hippocampus (as 
a well-recognised neurogenic area) and from the spi -
nal cord (where gliogenic signals are assumed to pre-
dominate) were subjected to a molecular analysis of
those selected factors which regulate crucial cell pro -
cesses. Additionally, the ability of these two microen-
vironments to promote the astrocytic differentiation was
studied to verify the postulated multipotency of the oli -
godendroglial progenitors.

Material and methods

OOlliiggooddeennddrrooccyyttee  pprrooggeenniittoorrss  iissoollaattiioonn
aanndd  ccuullttuurriinngg  

Oligodendrocyte progenitors were isolated from 
a mixed primary glial culture, established from brain
hemispheres of neonatal Wistar Cmd:(WI)WU rats. 
The procedure was approved by the Local Ethics Com-
mittee on Animal Care and Use. The detailed procedure
is described elsewhere [22,45]. Briefly, the method is
based on sequentially dislodging separate glial fractions
(first microglia and subsequently oligodendrocyte pre-

cursors, while astrocytes remain strongly adhered to
plastic) [24] from a 2-week-old primary culture. The shak-
en-off progenitors were spun down and the resulting
pellet was mechanically dispersed with a 22-µm needle
in serum-free standard DMEM medium, supplement-
ed with a solution of antibiotics. The cell suspension was
purified from contaminating non-oligodendroglial cells
by filtration through 80 µm and subsequently through
41-µm Millipore membranes. The additional step of the
OPC purification was based on the poor adhesion of the
progenitors to the uncoated plastic, while the other glial
fractions stick to the plastic surface within 2-3 hours.
After collecting of the supernatant containing floating
OPCs, the cells were seeded onto poly-L-lysine-coat ed
cover slips placed in 6-well plates (NUNC) at 2x105/cm2

density and cultured for the subsequent 10 DIV in se -
rum-free culture medium.

OOrrggaannoottyyppiicc  hhiippppooccaammppaall  ccuullttuurree  ((OOHHCC))

A hippocampal organotypic culture was esta blished
from the brains of 7-day-old Wistar rats according to the
previously described method [38,42]. All the procedures
of animal handling practices were accepted by the Lo -
cal Ethics Committee on Animal Care and Use. Briefly, 
the anesthetized animals were decapitated and their
brains were carefully isolated and inserted into ice-cold
HBSS (Gibco) buffer. The 400-µm thin hippocampal slices,
cut by a McIlwain tissue chopper, were placed onto Mil-
licell-CM (Millipore) membranes and inserted in 6-well
plates (NUNC). The slices were then cultured in a defined
medium composed of DMEM 50%, HEPES, HBSS 25%,
horse serum 25% (Gibco), 2 mmol/l L-glutamine, 5 mg/ml
glucose, 1% amphotericin B and 0.4% penicillin-strep-
tomycin. The serum concentration in the culture medi-
um was gradually lowered and from the 7th DIV on wards,
the slices were cultured in serum-free conditions. On the
8th DIV the organotypic slices were used for co-culture
experiments. 

OOrrggaannoottyyppiicc  ssppiinnaall  ccoorrdd  ccuullttuurree  ((OOSSCC))  

The organotypic longitudinal spinal cord slice cul-
ture was established according to the procedure des -
cribed elsewhere [19]. The spinal cords were extracted
from the same animals used for isolating the hippo -
campi. After dissection, 10 mm longitudinal sagittal sli -
ces of the spinal cord were cut using a tissue chopper
(McIlwain) at a thickness of 350 µm and transferred onto
a permeable Millicell-CM (4 slices per membrane) and
cultured according to the protocol used for OHC.



Folia Neuropathologica 2013; 51/2 105

Impact of local tissue microenvironments on oligodendrocyte progenitor differentiation

CCoo--ccuullttuurriinngg  ooff  OOPPCCss  wwiitthh  oorrggaannoottyyppiicc
sslliicceess  ((OOHHCC//OOSSCC))

The purified OPC fraction was left to adhere to poly-
L-lysine-coated cover slips for approximately 1 h and was
used for setting up the co-culture experiments with
either the spinal cord or the hippocampal organotypic

slices. The Millicell-CM membranes containing the slices
were transferred to the plates with OPCs and co-cul-
tured in indirect contact (Fig. 1) for the next 5 days in
serum-free DMEM supplemented with an AAS antibi-
otic solution (Gibco). The culture medium was changed
every second day. On the 5 DIV, the organotypic slices
were gently removed from the membranes with an

FFiigg..  11..  The schematic diagram of the co-culture experiments. The hippocampal and spinal cord slices were
prepared from the same 7-day-old rat and cultured on the cell culture inserts, serving for the indirect co-
culture with rat neonatal NG2 precursors.  
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ultra-thin brush, put into RNAlater Solution (Applied
Biosystems) and stored at 4°C until the nucleic acid had
been extracted.  

RReevveerrssee  ttrraannssccrriippttiioonn  aanndd  qquuaannttiittaattiivvee
rreeaall--ttiimmee  RRTT--PPCCRR  aannaallyyssiiss

In order to extract total RNA, the Trizol reagent (Invit-
rogen) was applied and the purified samples were sub-
jected to reverse transcription reaction by application
of High Capacity RNA-to-cDNA Kit (Applied Biosystems),
following the manufacturer’s instructions. To measure
the selected trophic factors (including neurotrophins)
and cytokines, the commercial RT2 Profiler™ PCR Ar -
ray for rat neurotrophins (SABioscience) was applied
according to the supplier’s protocol. The samples con-
taining 50, 75 and 100 ng of cDNA were amplified using
SYBR Green PCR Master Mix (Applied Biosystems) and
ABI Prism 7500 Sequence Detection System. Each sam-
ple was tested in triplicate during three analyses and
the parameters selected for the performed PCR reac-
tions were as follows: 2 min at 50°C, 10 min at 95°C,
40 cycles of 15 s at 95°C and 1 min at 60°C. To deter-
mine the PCR product specificity, a dissociation curve
was plotted and 1.5 % agarose gel electrophoresis was
performed to check the amplicon size. The obtained
data were normalized against that of the β-actin gene
and threshold cycle values (∆Ct) were quantified as fold
changes by the 2–∆∆Ct method [20].

IImmmmuunnooccyyttoocchheemmiiccaall  aannaallyyssiiss

The cell commitment and differentiation were as -
sessed by staining the PFA-fixed cells with a panel of
specific antibodies. To ensure the specificity of binding,
the cells were immersed in 10% normal goat serum in
PBS in at 25°C for an hour and then the primary anti-
bodies were applied overnight. The stages of oligoden -
drocyte maturation were verified by applying the fol-
lowing: rabbit polyclonal anti-PDGFαR (Santa Cruz) and
anti-NG2 (Chemicon) – for the precursor state; mono -
clonal anti-mouse against O4 (Sigma), CNP-ase (Sigma)
and GalC (Chemicon) – for immature oligodendrocytes;
monoclonal anti-mouse anti-MBP (Sigma) for myeli-
nating cells. To identify the generated astrocytes, rab-
bit polyclonal antibody against GFAP (Dako) was used.
Appropriate secondary antibodies, conjugated to either
Alexa-488 or Alexa-546 (Molecular Probes), were ap-
plied for 1 hour at RT. Before immersing in Fluoromont,
the cell nuclei were stained with 5 µm Hoechst 33258
(Sigma). The labelled cells were examined using an Axio -

vert 25 fluorescence microscope (Zeiss). Four randomly
selected fields on each slide were taken by a Videotro -
nic CCD-4230 camera and a cell count was done. 

SSttaattiissttiiccaall  aannaallyyssiiss

The data obtained due to molecular and immuno-
cytochemical examinations were subjected to a sta-
tis tical analysis with one-way analysis of variance 
(ANOVA) followed by the Bonferroni’s Multiple Com-
parison Test. All the values were expressed as mean
± SEM, *p < 0.05.

Results

To assess the ability of the oligodendroglial precursor
to acquire the astrocytic phenotype in various microen-
vironment conditions, a purified cell population from
neonatal rat brains was co-cultured with organotypic
slices derived from distinct CNS regions. Before estab-
lishing the OPC co-cultures, both the spinal cord and
hippocampal slices were deprived of serum supplement
to prevent the cell from being stimulated by addition-
al, undefined compounds. Subsequently, an indirect co-
culture system (Fig. 1) was set up to study the influence
of the soluble factors released from the organotypic
slices into the culture medium on OPCs differentiating
into astrocytes. Simultaneously, the OPCs were allowed
to spontaneously differentiate in the same, serum-free
medium as the control in order to evaluate the poten-
tial stimulating effect exerted by the CNS slices. The data
obtained as a result of immunocytochemical analysis
showed that 99.2 ± 0.92% of OPCs had matured from
NG2 antigen expressing cells (Figs. 2A-C) into O4 and
GalC-positive oligodendrocytes during the 5-day – in vit-
ro period. Another interesting finding concerned the pro-
motion of astroglial differentiation by slightly elevat-
ing the serum content in the culture media. By adding
1% serum, the number of GFAP-positive cells in the dif-
ferentiating population increased by 2.48 ± 0.8%. 

The examination of how the cells differentiated in
the co-cultures with organotypic slices led to some
more interesting observations. While the GFAP+ cells
constituted a very minor population in control experi-
ments, their amount increased as much as 18.5 ± 2.31%
of the total cell number in the medium continuously
conditioned by either hippocampal or the spinal cord
slices (Figs. 2D-F). A quantitative analysis of both co-
culture types revealed approximately comparative (15-
19%) content of astrocytes with no statistically signi -
ficant differences. 
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The observed potent capability of the paracrine sig-
nals provided by organotypic slices to trigger astroglial
differentiation prompted us to check the expression
of the selected cytokines and trophic factors at the
mRNA level by means of semi-quantitative molecular
methods. The microarray screening for neurotrophins
and related factors which are known to be engag-

ed in main cellular functions revealed a significantly
elevated expression of all of the examined factors in
organotypic slices in relation to housekeeping genes
(B-actin, ribosomal protein L13A, lactate dehydroge-
nase A). In turn, a comparison between hippocampal
and spinal cord slices showed that out of the 15 ana -
lysed factors the expression of nine in the hippo campal

AA BB CC

DD EE FF

FFiigg..  22..  Differentiation of oligodendroglial precursors in serum and supplement-free conditions during 5 DIV.
AA, BB,, CC)) Immunostaining of control oligodendrocytes with classical markers: NG2 (green) and GalC (red). 
DD, EE,, FF)) Astroglial phenotype acquired differentiating control OPCS (DD), and co-cultured with hippocampal
(EE) and spinal cord (FF) organotypic slices. Cells are identified by GFAP (green) expression. Cell nuclei are
visualized by staining with Hoechst 33258 dye (blue). Scale bar = 50 µm. 
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slices was noticeably elevated, two were downregu-
lated and only the other four were similarly expressed
(Fig. 3). The factors, of which the mRNA expression is
elevated, include neurotrophins such as brain-derived
trophic factor (BDNF), nerve growth factor (NGF), cil-
iary neurotrophic factor (CNTF), glial-derived neuro -
trophic factor (GDNF) and other factors too, such as
neurotrophin-5 (NTF5), fibroblast growth factor 9 (FGF 9),
Signal Transducer and Activator of Transcription pro-
tein (STAT4) and glial maturation factor (GMF, isoforms
β and γ). The factors, which are strongly expressed in
the spinal cord, are VGF nerve growth factor inducible
protein and neurotrophin 3 (NTF3). Those without
noticeably changed expression include leukemia
inhibitory factor (LIF) as well as STAT1, STAT2 and STAT3.    

Discussion 

Over the past decade, oligodendrocyte disorders
accompanied by myelin deficit, malformation or its loss
have become targets for cell-based therapies. Oligo-
dendrocyte progenitors may be most conveniently used
for the complex neurorepair strategies. First of all, they
are already glia-commitment progenitors themselves,
which considerably reduces the danger of neoplasia and
assures their differentiating into myelinating cells
[4,12,16,24,43,51]. Moreover, there is a growing list of
evidence that OPCs exhibit some important properties
of neural stem cells in a conducive microenvironment.
They have been shown to be sensitive to being stim-
ulated by the external clues and prove to be multi-
potential. However, even in the highly stimulus milieu,
part of the OPC population is still proliferative. 

The enumerated properties could be beneficial to
the process of restoring a damaged tissue. While pro-
moting neurogenesis is usually highly desirable, the
ability of differentiating into astrocytes might however
prove be a serious obstacle. Many CNS injuries are asso-
ciated with the glial scar formation, which significantly
hinders precursors from migrating and delivering
anti-inflammatory and trophic factors [9,37,41,50]. 

The objective of our studies was to assess the abil-
ity of OPCs to acquire the astroglial phenotype in 
a microenvironment created by the nervous tissue
derived from distinct CNS regions. While in controls,
all of the progenitors matured into oligodendrocytes
expressing myelin components, the medium contin-
uously conditioned by either the spinal cord or hip-
pocampal slices triggered astroglial differentiation of
a part of the cultured OPCs. What has been known for

a long time is that astrocytes can be derived from com-
mon glial precursors in vitro while being cultured in
high concentrations of serum [14,30,31,47]. This obser-
vation contributed to one of the pioneer terms for
describing oligodendrocyte progenitors: O-A2. In our
serum free co-culture system with the organotypic slices
(i.e. with the preserved tissue organization) the paracrine
signals proved to be potent to force the as troglial com-
mitment of OPCs. There are also reports describing a sim-
ilar in vivo effect, found in different CNS regions
[33,56]. The observation coming from our study con-
cerning the promotion of astroglial differentiation in co-
cultures with hippocampal and spinal cord sli ces are in
agreement with the reports about the glial scar formation
in injuries occurring to the brain and spinal cord.  

The heterogeneity of the nervous tissue microen-
vironment, suggested by the results obtained in our
and other laboratories, prompted us to analyse a spec-
trum of active compounds that are known to regulate
the main biological functions like proliferation, survival,
commitment and differentiation. A comparison of data
gathered from molecular studies showed that certain
crucial factors involved in important biological process-
es occurring in cells are differently expressed. The ex -
pression of nine examined factors (out of fifteen) turned
out to be increased in the hippocampal slices when
compared to the spinal cord slices, two others were
down-regulated, while only four were similarly ex -
pressed. These findings prove conclusively that the local
tissue microenvironment within the nervous system
is heterogenic.

What is worth noting is that among factors being
highly expressed in the hippocampus are those exert-
ing the neurotrophic effects: neurotrophins NGF and
BDNF [5] as well as CNTF [3,27] and GDNF [7,57]. They
supposedly play a role in recruiting new neurons, pro-
tecting them and regenerating nerves [13,57]. GMFs
were shown to be involved in regulating glia activity
and in enhancing the pro-inflammatory responses in
a range of selected diseases [53]. Signal Transducer and
Activator of Transcription together with FGF-2 are en -
gaged in regulating genes responsible for cell prolif-
eration, migration, differentiation, and survival, as well
as for neurogenesis and axon growth [8,35]. Up-reg-
ulation of those selected genes is presumably asso-
ciated with the neurogenic regions characteristic of hip-
pocampus.

The specificity of different CNS regions, indicated
by the results obtained in the presented study, might
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significantly modify cell commitment and differentia-
tion. Since therapies based on mobilizing endogenous
progenitors or on transplanting stem cells are intense-
ly pursued [11,17,21,29,48], the cell fate in various local
microenvironments should be investigated for the pur-
pose of predicting the outcome of the applied treatment.

In conclusion, the presented work shows the sub-
stantial differences in the expression of the factors gov-
erning the crucial processes involved in oligodendroglial
precursors biology between organotypic slices derived
from distinct CNS regions. The stated local tissue het-
erogeneity should be taken into consideration when
planning cell-based therapies.
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