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A b s t r a c t

Glioblastoma is the most common primary brain tumor. Despite multimodality therapy with aggressive microsurgical 
resection and adjuvant chemotherapy and radiotherapy, the median survival is below 15 months. Glioblastomas are 
heterogeneous tumors with high resistance to most chemotherapeutic drugs. According to reliable evidence, YKL-40, 
one of the best investigated chitinase-like protein, may facilitate invasion, migration and angiogenesis, and could be 
also responsible for temozolomide resistance in glioblastoma, thus conferring a dismal prognosis. Previous studies 
have demonstrated that glioblastoma stem cells give rise to endothelial cells through an YKL-40 influence. Such fac-
tor is closely related to the subventricular zone. This review focuses on the most recent theories involving the possible 
relationship between topographic gliomagenesis related to the subventricular zone and YKL-40.
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Introduction

Glioblastoma (GB) is the most common primary 
malignant brain tumor in adults [6,86], accounting  
for more than 45% of primary malignant brain 
tumors. Glioblastoma has an incidence that increas-
es with age and peaks between 75 and 84 years old, 
being more common in white males, according to 
the most recent Central Brain Tumor Registry of the 
United States (CBTRUS) statistical report. The medi-
an survival for patients diagnosed with GB using 
the current standard of care is only 12 to 15 months 
[8,52,77,81] despite multimodality treatment with 

aggressive microsurgical resection, combined radia-
tion and chemotherapy, and adjuvant chemothera-
py [81]. GB cells are diffusely infiltrative and motile; 
consequently, GB renders them incurable by surgery 
alone [24,78,79]. Thus, a novel therapeutic approach 
is urgently needed to control recurrence and over-
come resistance to treatment. 

Over the last few decades, it has become clear 
that GBs are characterized by an extreme degree of 
phenotypic, cellular, genetic, epigenetic, and radio-
logical heterogeneity, as implied by the older term 
“multiforme” [37,73], which challenges our ability 
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to understand or treat it. There have been several 
studies that seek to determine which factors can be 
prognostic or predictive to impact on overall survival 
and progression free survival [3,19,33,41,46,53,55].

Although currently more research is needed, bio-
markers must be taken into account when deciding 
which treatment modality is most appropriate for 
the individual patient. We review the evidence and 
theories involving the possible relationship between 
topographic gliomagenesis related to the subven-
tricular zone (SVZ) and YKL-40, in an attempt to 
reveal either cellular mechanisms or molecular fac-
tors associated with ubiquitous GB stem-like cells 
(GSCs) support and motility. The following aspects 
are summarized: subventricular zone, mesenchymal 
factor YKL-40, radial glia and the perivascular tumor 
cells. 

Levels of circulating, subgranular or subventric-
ular YKL-40 (chitinase 3-like 1 or cartilage glycopro-
tein-39), have the potential to be used in the opti-
mization of glioblastoma therapies. Elevated serum 
levels of YKL-40 were found in 55-75% of patients 
with GB with shorter OS [6,7,29,31].

One of the most recent and attractive evidence 
included YKL-40 as the most predictive and prog-
nostic marker in patients with GB [15,87], and it has 
been shown directly associated with tumor radiore-
sistance, invasiveness, migration, recurrence, chro-
mosome 10 loss [6,29,54], hypoxia-induced mesen-
chymal transition [36], and poor clinical outcome 
prognosis. Recently, Akiyama et al. using a TMZ-re-
sistant (TMZ-R) U87 GB cell in vitro and in vivo 
identified that YKL-40 could be also responsible for 
temozolomide resistance in GB and suggested that 
therapies targeting YKL-40 may be potentially bene-
ficial in GB treatment [2].

Glioblastoma stem cells and YKL-40

Glioblastoma is composed of cancer cells and 
surrounding stromal cells with diverse genetic/epi-
genetic backgrounds. Increasing evidence suggests 
that the tumorigenic process in GB is apparently 
initiated and maintained by a rare and special sub-
population of slow-cycling clonogenic cells referred 
to as GSCs [28,62,66,67]. It has been assumed that 
overall survival heterogeneity [33,45,46] in patients 
with GB might be related to GSCs variability and 
brain microenvironment [58]. Presently, it is not clear 
what the origin of GSCs is, but presumably it may 

arise from SVZ stem cells. Based on in vivo evidence, 
GSCs are responsible for tumor growth, recurrence, 
and resistance to therapies [15,48,59] and endowed 
with unregulated self-renewal, robust proliferative 
potential, high motility, diversity of progeny asso-
ciation with blood vessels and white matter tracts, 
multi-lineage differentiation capacities, invasive-
ness [22,63], and relatively resistant to radio- and 
chemotherapies [56,80], which express markers of 
both undifferentiated and differentiated cells [73], 
with a similar behavior to neural stem cells (NSCs) 
[5], which are present during the early development 
of the brain [7]. Nevertheless, the specific intrinsic 
factors that govern such characteristics are not well 
understood [27,66,83].

Mounting evidence shows that GSCs are large-
ly dependent on distinctive and specialized vascu-
lar, perivascular or perinecrotic microenvironment 
called “niche” [11,30,63,64,66,68,76]. Furthermore, 
some investigators observe that GSCs give rise to 
endothelial cells (ECs)60, as shown in Figure 1, and 
induce changes in vascular niches, characterized by 
the sprouting of new blood vessels, consisting of  
an abundant, leaky and highly disorganized “glo-
meruloid” vascular network through the cooperative 
secretion of pro-angiogenic factors [1,61,67], such 
as VEGF, IL-8 and YKL-40 [2,29,56], highly differ-
ent in patients with the same tumor [42,56,60,82].  
YKL-40, also known as chitinase-like protein 1 or 
human cartilage glycoprotein-39 [6], is a highly con-
served glycoprotein that belongs to the glycosyl 
hydrolase family 18 with no chitinolytic activity [7,84], 
included as a mesenchymal marker overexpressed 
in GB and postulated as one of the most promis-
ing predictive serum markers since it was found to 
have elevated levels in the serum of patients with 
GB [6,29,31,32,35].

So far, YKL-40 has been found to induce tight 
interplay between the membrane receptors syn-
decan-1 and an adjacent membrane-associated pro-
tein integrin αvβ5 [21] on endothelial cells [70,71], 
and triggered a signaling cascade through pFAK 
[8,61] to MAP kinase ERK-1 and ERK-2 by regulating 
VEGF expression and inducing angiogenesis as an 
independent angiogenic factor under hypoxic con-
ditions. 

However, these vascular formations usually lack 
basement membrane and pericyte coverage. In 
addition, recent studies [1,44,66] support that vas-
culogenesis [34,56] by GSCs may occur directly via 
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differentiation of cells that participate in vasculo-
genesis, tumor growth, or indirectly via cytokines 
and chemokines production stimulated by hypoxia, 
which are known to activate endothelial cells. Inter-
estingly, through a three dimensional reconstruc-
tion, Calabrese et al. demonstrated that brain GSCs 
are preferentially located in close contact to tumor 
microvasculature and that endothelial cells release 
trophic factors that maintain these cells in a self- 
renewing and undifferentiated state [12].

As a well-recognized component of the tumor 
microenvironment, intratumoral low oxygen concen-
tration upregulates the expression of multiple factors 
such as hypoxia-inducible factors (HIFs), members of 
a subfamily of basic helix-loop helix transcription fac-
tor that regulates different aspects of cell biogenesis 
such as metabolism, migration, proliferation, differen-
tiation, apoptosis, angiogenesis, resistance to chemo-
therapy, and stem cell maintenance [13,14,28,44,50]. 
Importantly, recent findings indicate that GSCs are the 
origin of tumor recurrence in glioblastoma [13,62,83]. 
Indeed, it has been demonstrated through a genet-
ically-engineered mouse model that after arrest of 
tumor cell proliferation with temozolomide, the first 
cell population to undergo proliferation and lead to 
tumor regrowth is the nestin-positive (a marker also 
for neural stem cells) GSC population [13].

Growing evidence indicates that nuclear accumu-
lation of HIF results in transcriptional activation of 
the vascular endothelial growth factor (VEGF) whose 
pathway is modulated by reactive oxygen species 
(ROS), and demonstrating VEGF downregulation fol-
lowing HIF1a gene deletion and that HIF1/2 deter-
mined VEGF levels [4,28,44]. Francescone et al. iden-
tified that YKL-40 (CHI3L1) closely upregulates VEGF 
expression, and YKL-40-induced tumor vasculogene-
sis is at least partially dependent on VEGF [21].

Adult stem cells, human subventricular 
zone and YKL-40 expression  
in glioblastoma

In the adult human brain, astrocytes are the larg-
est glial population, and provide structural, metabo
lic, and trophic support for neurons. Astrocytes can 
also support proliferation of adult NSCs lining the 
SVZ. Adult neurogenesis is a lifetime process, which 
has been isolated from two specific neurogenic 
regions: the dentate gyrus of the hippocampus, and 
the subventricular zone of the lateral ventricles. In 
both regions, NSCs are identified as a subpopulation 
of astrocytes that are able to produce undifferentiat-
ed neuronal and glial precursors [13,18,40,67].

The adult SVZ, most pronounced in the dorso
lateral wall of the lateral ventricle, is the main 

Fig. 1. Model depicting the glioblastoma stem-like cells (GSCs) transdifferentiation into Ecs. YKL-40 acts as 
an angiogenic factor to trigger tumor vascular development. B) Magnetic resonance image of a glioblastoma 
tumor, and (A) tissue sample from the same tumor illustrating tumor microenvironment.
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source of new neurons in the adult brain, and con-
tains a subset of astrocytes which behave as stem 
cells both in vivo and in vitro [18,25,30,43,45,68], and 
derive from radial glia (RG) cells [17,39]. In fact, RG 
cells also act as NSCs and source of neurogenesis, 
and probably give rise to astrocytes in the cerebral 
cortex [17,23,64,74]. In the adult human brain, the 
cellular composition and cytoarchitecture of the 
SVZ is organized into four distinct layers: layer I  is 
found adjacent to the lateral ventricle, and rep-
resents a  single layer of multi-cialiated ependymal 
cells; layer II, also known as a hypocellular layer [64], 
consisting of a  diffuse network of a  large number 
of astrocytic, ependymal and neuronal processes, 
but a  few cell bodies; layer III, a strip of astrocytic 
bodies, and externally, layer IV, adjacent to the brain 
parenchyma, we find a  transition zone composed 
of many myelin tracts and neuronal bodies (Fig. 2) 
[25,26,30,38,57].

Interestingly, NSCs, identified as a subpopula-
tion of astrocytes called B1 astrocytes, give rise to 
actively proliferating transit amplifying progenitors 
(type C cells), which in turn differentiate into neuro-
blasts (type A cells) that differentiate into interneu-
rons and eventually migrate toward the olfactory 
bulb (OB) circuitry, via the rostral migratory stream 
(RMS), preferentially located in the ventral anterior 
SVZ of the adult human brain (Fig. 3). In the adult 

human brain, there are a small number of migratory 
neuroblasts in the SVZ and RMS. Nevertheless, so far 
there has been no consensus about the exact mech-
anisms underlying such neural migration toward OB 
in the adult human SVZ, and also whether there is 
an RMS [16,57,65]. Although the cytoarchitecture 
of the adult human SVZ have been characterized, 
a transcriptional analysis has not been fully estab-
lished and understood. Interestingly, a recent tran-
scriptional analysis [51] distinguished human SVZ 
astrocytes from parenchymal astrocytes based on 
gene expression, suggesting that SVZ astrocytes 
(type B) maintain the stemness in the adult human 
brain. Alternatively, it was found that in vitro CSCs 
have a tropism toward normal vasculature.

A putative source of glioma cells is the SVZ, the 
largest area of neurogenesis in the adult human 
brain. NSCs line the lateral ventricles in the SVZ, and 
recruitment of these progenitor cells may play a role 
in the aggressive behavior encountered in GB. In ani-
mal studies, the SVZ demonstrated increased sus-
ceptibility to tumorigenesis compared with cortical 
regions. Experiments and clinical findings provide 
evidence that neuronal progenitor cells in the SVZ 
with a high migratory potential are involved in the 
aggressive GB subtype. Recently, the SVZ has been 
identified as the source cells of malignant gliomas 
[55,63-66,68]. 

Fig. 2. A diagrammatic sectional view of the 
human subventricular zone. Lateral ventricle 
illustrating the cellular composition and cytoar-
chitecture of subventricular zone (SVZ), consist-
ing of four layers: layer I – ependymal cells, layer 
II – hypocellular gap, layer III – a strip of astrocyte 
bodies, and layer IV – transitional zone.

Fig. 3. Cell types and anatomy of the subventric-
ular zone (SVZ) niche. Neural stem cells in the 
human brain, which generate the type C cells. 
These transit amplifying cells, type C cells, mature 
into type A cells, or neuroblasts that differentiate 
into interneurons and eventually migrate toward 
the olfactory bulb circuitry, preferentially located 
in the ventral anterior SVZ of the adult human 
brain.

Type C cells
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Migration  
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Based on cancer stem cell theory, and images 
of GB, SVZ was classified according to one of these 
categories: type I – tumor in which the contrast-en-
hancing lesion contacts both the SVZ and the cortex; 
type II – tumor contacts the SVZ but not the cor-
tex; type III – tumor contacts the cortex but not the 
SVZ, and type IV – tumor contacts neither the SVZ 
nor the cortex [46]. Regarding the multifocal and/or 
multicentric GBs there are many theories, but sup-
ported by few studies [46,69], showing an associa-
tion with group I given the findings consistent with 
high migratory and invasiveness of cells, according 
to Willis’ theory. Although relevant data suggest that 
GSCs may be important in gliomagenesis originat-
ing from SVZ, recent research has differed from this 
argument, hypothesizing through a combination of 
clinical observations and mathematical modeling 
that GBs may arise from cells distributed throughout 
the white matter and not limited to the region of  
the SVZ [9].

In a novel and interesting study on the YKL-40 
expression in developing human embryonic and 
fetal tissues conducted by Bjornbak [7], YKL-40 was 
found to be associated with tissues undergoing mor-
phogenetic changes. In this research, YKL-40 was 
found significantly marked in GB, as compared with 
normal human brain SVZ. By using immunohisto-
chemical, double-labeling immunofluorescence and 
mRNA analysis through brain development (from 6th 

to 21st week post-conception), the authors pointed 
out that YKL-40 may be implicated in controlling 
angiogenesis and access of peripheral cells to the 
forebrain. 

On the cellular lever, Bjornbak also suggested 
that YKL-40 plays a role in the developing brain bar-
riers as well as is possibly involved in the differen-
tiation of a particular astrocytic lineage. Consistent 
with our previous findings [55], in this study there 
was a decreased YKL-40 immunoreactivity in prox-
imity to the cortex and ECs of the pia mater were 
not positive for YKL-40. Additionally, YKL-40 immu-
noreactivity was found also to be produced by the 
choroid plexus epithelium and secreted into the 
ventricular system and either detected in both neu-
roepithelial cells and radial glial end feet. Strikingly, 
Antonelly et al. [3] reported on 22 children with GBs 
who underwent tumor resection and immunohisto-
chemistry was performed on tumor tissue for YKL-40 
immunoexpression, showing less expression and 
better OS. However, such disagreement with recent 

data may be due to a small sample size, as stated by 
the authors.

Recent studies with gene expression profiles have 
established that cells expressing increased mesen-
chymal properties have a tendency to display self- 
renewal capacity. Interestingly, mesenchymal signa-
ture genes such as YKL-40 (shown in the early stage 
of development and probably related to neural stem 
cells) and oncostatin M – which belongs to interleukin 
6 group of cytokines – receptor are associated with 
highly invasive feature and worse prognosis in GB 
patients [49,72].

Current data provide several useful insights 
[47,71]. First, YKL-40-positive cells may be respon-
sible for the aggressive and invasive pattern seen in 
GSC. What are the properties of the microenviron-
ment that permit widespread invasion? The previous 
phenomenon probably could be mediated by NSCs 
cues or by direct response of YKL-40 over ECs. Since 
most GBs tumors occur late in life and recently it 
was suggested a relationship between YKL-40 and 
SVZ, we can estimate that GBs could be initiated 
either by unknown trigger factors over preformed 
pathways. As regards YKL-40 immunoexpression, 
is there a special association between SVZ region-
alization and GB formation? Under this topic, fur-
ther studies in large series are needed to evaluate 
how YKL-40 measurements and pathways change 
throughout life. Furthermore, currently we are con-
ducting a study that seeks to determine the factors 
causing tumor YKL-40 overexpression and whether 
such factors are expressed in both SVZ in close rela-
tionship to GB and in SVZ without a close relation-
ship with GB in the same brain patients.

The role of YKL-40, glial cells  
and perivascular scaffold in migration 
and invasion

The existence of possible anatomical scaffolds 
allowing motility and migration of neuronal precur-
sors toward the olfactory bulb along the vessels was 
first suggested and reported by Bovetti et al. [11] based 
on experimental analysis of olfactory bulb (OB) in 
rodents. Ontogenically, RG cells have been described 
as the first glia to appear, developing probably from 
the neuroepithelial youngest cells [17].

Although RG cells maintain a close contact with 
the SVZ in humans throughout adulthood, its apical 
processes are shortened by a probable retractable 
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mechanism with posterior acquisition of ependy-
mal characteristics, suggesting that RG cells turn 
into astrocytes, carried out by a mechanism not well 
understood [10,75], although the factors responsible 
for radial glia and their maintenance are lost during 
development. 

Even though the existence of neuronal migration 
along RG during development is patent, in the mam-
malian adulthood such phenomenon is not exper-
imentally demonstrated. Based on the latter find-
ings, recent research suggests that heterotopic RG 
cells progeny spread at early postnatal stages with 
local proliferation [17].

We hypothesize that GB tumors regionalization 
in adult human brain could be explained by the fact 
that residual RG-tumor promoter could be ‘lost’ in 
different brain pathways, but given the technical dif-
ficulty following stem cells along the extension of 
the RG cells and to determine the microanatomic 
localization of perivascular glioma cells, the invasive 
and motility pattern of gliomas may be explained 
nowadays by the understanding of branching blood 
vessel architecture. The study of all mechanisms that 
control and modulate the migration and invasion of 
GSCs and progeny is a crucial step for the design of 
therapies against GB. 

Baker et al. [4] studied the requirement for neoan-
giogenesis in perivascular glioma by treating animals 
with angiogenesis inhibitors bevacizumab and DC101. 
In their work, the authors explained that perivascu-
lar invasion give rise to neoangiogenesis by digesting 
normal brain tissue in a VEGF-independent way that 
leads to tumor invasion. In line with a vascular-guided 
GSCs migration pattern during GB progression, Shao 
et al., reviewed how the mesenchymal marker YKL-40 
acts on GSCs to lead to the formation of angiogen-
esis. They explained that YKL-40 maintains vascular 
integrity. This fact is of paramount relevance as the 
microanatomic vascular scaffold was long thought to 
be non-neoplastic and that the relationship between 
tumor cells and ECs are independent [20].

Conclusions

Glioblastoma with SVZ infiltration showed de- 
creased PFS and OS rates, probably due to GSCs and 
its aggressive mesenchymal growth pattern. YKL-40 
seems to play a key role in the motility and migrating 
patterns of GSCs and their transdifferentiation into 
ECs. These findings may be associated with the loca-

tion of GSCs in the SVZ and the occurrence of a more 
invasive and migratory GB subtype. Furthermore, 
GSCs can be the source for inter-tumoral heteroge-
neity with an impact on clinical outcome.

Although tumor development is highly dependent 
of several molecular factors, angiogenesis may be 
the key to developing novel therapeutic agents able 
to inhibit molecular pathways responsible for GB.
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