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A b s t r a c t

The defective glial and/or neuronal glutamate transport may, in chronic neurotoxicity, contribute to several

neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) – a progressive neurodegenerative

disorder of lower and upper motor neurons (MNs). To determine the detailed ultrastructural characteristics of

excitotoxic motor neurons neurodegeneration we used a model of slow excitotoxicity in vitro based on selective

inhibition of glutamate uptake. The study was performed on organotypic cultures of the rat lumbar spinal cord

subjected to various concentrations of glutamate uptake blockers: threohydroxyaspartate (THA) and L-trans-

pyrrolidine-2, 4-dicarboxylate (PDC). The chronic inhibition of glutamate transport resulted in a dose-dependent

slow neurodegeneration of spinal MNs consisting of necrotic, apoptotic and autophagic mode of cell death.

There were some MNs that shared certain characteristics of a different type of cell injury. The results showed that

a different mode of cell death in excitotoxic MNs degeneration may coexist resulting in apoptosis-necrosis and

apoptosis-autophagocytosis continuum. 
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Introduction

Glutamate in mammalian central nervous system

(CNS)  may act as an excitatory neurotransmitter and as

a potent neurotoxin as well [24,38]. The chronic

excitotoxicity has been suggested to be a common final

pathway in the pathogenesis of various

neurodegenerative diseases, including amyotrophic

lateral sclerosis (ALS) – a progressive neurodegenerative

disorder of lower and upper motor neurons (MNs)

[2,15,29,30,34,36]. It has been suggested that the

selective loss of MNs in ALS can be in part due to the

defective glial or neuronal glutamate transport related

to concomitant persistent exposure to synaptic

glutamate. A useful model of slow glutamate

excitotoxicity in vitro, based on selective inhibition of

glutamate uptake with sustained elevation of

extracellular glutamate in culture medium, was

introduced by Rothstein et al. [35]. The main advantage

of this model is the maintenance of neuron-astrocyte

structural and metabolic interactions that is of

particular importance in neuronal response. To date,
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Fig. 1. Normal motor neuron with large nucleus,

dispersed chromatin, distinct nucleolus and

abundant cytoplasm containing numerous

cytoorganelles. Control culture, 28 DIV. Bar = 2 µM

Fig. 2. Completely damaged neuron (N) with

total destruction of cytoorganelles and nucleus.

3 days of 100 µM THA incubation. Bar = 1 µM

several subtypes of glutamate transporters have

been identified, including GLAST and GLT-1 which are

primarily expressed on the surface of astrocytes

membranes [6,7,12,17,20,33]. Some evidence

underlines the severe decrease of GLT-1 expression in

the motor cortex and spinal cord of patients with ALS

[36]. It has been suggested that the glial component

might be involved in the progressive MNs loss in ALS

through glutamatergic toxicity. The detailed

morphological studies of MNs pathology important

for understanding the mechanism of cell death in

neurodegenerative disorders are lacking. 

The aim of this study was to determine the

ultrastructural characteristics of MNs changes in

a model of slow neurodegeneration in vitro. The

contribution of different modes of neuronal death was

established in the organotypic cultures of rat lumbar

spinal cord that was chronically exposed to various

concentrations of specific glutamate uptake blockers:

DL-threo-β-hydroxyaspartate (THA) and L-trans-

pyrrolidine-2, 4-dicarboxylate (PDC). 

Material and methods

Organotypic cultures were prepared from the spinal

cord obtained from 8-day-old rat pups. The lumbar

spinal cords were dissected under sterile conditions

and cut transversely into thin slices. The explants were

placed on the collagen-coated cover glasses with two

drops of nutrient medium and sealed into the

Maximow double assemblies. The cultures were kept

at 36.6°C in a medium consisting of 25% inactivated

fetal bovine serum and 75% DMEM (Dulbeco Modified

Eagle’s Medium) supplemented with glucose to a final

concentration of 600 mg% and with antibiotics. The

medium was changed twice a week. On the 10-14th day

in vitro (DIV), the well-differentiated cultures were
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Fig. 3. Neurons displaying various morphological

changes: apoptotic changes (N1), slight

cytoplasmic vacuolization (N2), good preservation

of nucleus and organelles (N3). 7 days of 100 µM

THA incubation. Bar = 2 µM

Fig. 4. Neuron exhibiting classical apoptotic

condensation of nuclear chromatin at the margin

of the nucleus (arrows). Cytoplasm filled with

vacuoles and damaged cytoplasmic organelles.

14 days of 100 µM THA incubation. Bar = 1 µM

incubated with medium containing selective blockers

of glutamate transport: DL-threo-β-hydroxyaspartate

(THA, Sigma) and L-trans-pyrrolidine-2, 4-

dicarboxylate (PDC, Sigma)) at concentration 100 µM

and 500 µM. After 2 and 24 hours, 3, 5, 7, 14 and 28

days post treatment the cultures were processed for

electron microscope. They were rinsed in cacodylate

buffer (pH 7.2), fixed in a mixture containing 0.8%

formaldehyde and 2.5% glutaraldehyde for 1 hour,

postfixed in 1% osmium tetroxide, dehydrated in

alcohols in graded concentrations and embedded in

Epon 812. Ultrathin sections were counterstained with

uranyl acetate and lead citrate and examined in a JEOL

1200EX electron microscope. 

Results 

The control spinal cord cultures up to 28 DIV

maintained the well-preserved large MNs and

numerous normally appearing astroglial cells, mainly

of protoplasmic type. The normal MNs were

characterized by a large nucleus with dispersed

chromatin and distinct nucleolus surrounded by an

abundant cytoplasm containing well-developed

granular endoplasmic reticulum, Golgi apparatus,

numerous mitochondria and neurotubules (Fig. 1). 

The spinal cord cultures treated with THA or PDC

displayed slowly progressing MNs degeneration up to

28 days. The picture of neuronal degeneration

depended on the concentration of the agent and the

duration of exposure. A wide spectrum of

morphological changes reflecting distinct features of

apoptotic, autophagocytic and/or necrotic mode of

neuronal death was identified in cultures treated both

with THA and PDC. Up to 24 hours of THA exposure at

concentration 100 µM, the majority of large neurons

exhibited only subtle morphological abnormalities
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Fig. 5. Neuron exhibiting masses of chromatin

at the periphery of the nucleus and shrunk

cytoplasm. 14 days of 100 µM THA incubation.

Bar = 1 µM

Fig. 6. Damaged neuron exhibiting nucleus

with clumps of condensed chromatin and

cytoplasm with destructed organelles and

numerous autophagic vacuoles (av). 21 days of

100 µM THA incubation. Bar = 1 µM

limited to mitochondrial swelling. At 3 days post THA

treatment some MNs presented vacuolar

neurodegeneration, ranging from focal accumulation

of vacuoles and vesicles to severe cytoplasmic

vacuolization. Only few MNs developed the features

of acute necrotic damage with total destruction of

cytoplasmic organelles and nucleus (Fig. 2). During the

period of 3 to 7 days of THA treatment the neurons

displayed various morphological changes including

vacuolization of the neuronal cytoplasm or typical

apoptotic features (Fig. 3). At later stages, after 7-21

days after exposure, the apoptotic and autophagic

mode of neuronal damages predominated. However,

the pure apoptotic changes characterized by typical

condensation and margination of nuclear chromatin

beneath the nuclear envelope accompanied by

shrinkage of the cell body with relatively intact

cytoorganelles could be seen only occasionally. In the

majority of MNs the nuclear apoptotic changes were

accompanied by certain characteristics of either

necrotic or autophagic degeneration of the cytoplasm.

Some neurons displayed aggregation of nuclear

chromatin in dense masses or curved half-moon

profiles associated with advanced cytoplasmic

vacuolization (Fig. 4). Numerous MNs developed the

peripheral aggregation of nuclear chromatin

indicating early apoptotic changes, whereas their

cytoplasm exhibited more or less destructed

cytoorganelles and/or autophagic vacuoles (Fig. 5, 6).

A subset of MNs displayed distinct cytoplasmic

characteristics of typical autophagic degeneration

with numerous double-membrane bound

autophagosomes filled with degenerative cytoplasmic

oragnelles (Fig. 6). Fragments of degenerated cells

and membrane-bound apoptotic profiles containing

fragments of condensed chromatin and cytoplasmic

structures were often ingested by neighboring glial

cells (Fig. 7). 
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Fig. 7. Apoptotic profiles (arrows) containing

fragments of condensed chromatin and the rest

of cytoorganelles ingested by glial processes. 14

days of 100 µM THA incubation. Bar = 1 µM

Fig. 8. Completely damaged neuron with

condensed chromatin masses and total

destruction of cytoplasmic organelles. 3 days of

500 µM THA incubation. Bar = 1 µM

The higher concentration of THA (500 µM)

produced rapidly progressing MNs degeneration with

more advanced acute necrotic cell death within 3 days.

Completely damaged neurons with highly condensed

chromatin and severely damaged cytoplasmic

organelles were often seen (Fig. 8). MNs exhibiting

apoptotic and/or autophagic characteristics of cell

death could be seen in the later stages of observation. 

PDC treatment resulted in a similar but less

advanced MNs degeneration over the same time of

observation. The process of neurodegeneration was

characterized by different modes of cell death

including necrosis, apoptosis and autophagocytosis

and their combination. 

MNs degeneration was accompanied by distinct

astroglial changes, some of which proceeded the

massive neuronal damage. Protoplasmic astrocytes

exhibited swelling of peripheral parts of the

cytoplasm already after 24 hours of THA and PDC

incubation and the presence of irregular vacuoles in

the cytoplasm during the later period of experiment.

Discussion

MNs death in ALS is linked to several pathogenic

factors including aberrant excitatory neurotransmission

[9,15,36,46], increased formation of reactive oxygen

species [40] and abnormalities of neurofilaments

function [1]. The cellular mechanism by which motor

neurons slowly degenerate after chronic inhibition of

glutamate uptake is not fully understood, although it

appears to be mediated via non-NMDA receptors [37].

The evidence of both, the glutamate deficiency in

brain and spinal cord [29] and the elevated level of

glutamate in serum and CSF in ALS patients [21,34] has

been shown. 

Tissue culture represents a useful experimental

system for the characterization of the mode of
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neuronal degeneration. Until now, several models of
MNs injury in vitro, reproducing the in vivo conditions,
have been established [41]. The model of chronic
glutamate excitotoxicity, originally developed by
Rothstein et al. [35] on organotypic spinal cord slices,
seems to be particularly useful for the study of MNs
degeneration. This model was based on slow
glutamate-receptor mediated neuronal death induced
by incubation with the specific glutamate transporter
inhibitors. Both, NMDA and non-NMDA subtypes of
glutamate receptors, by which glutamate toxicity can
be mediated, have been evidenced on spinal MNs [39].
Glutamate transporters play an important role in the
maintenance of extracellular concentration of
glutamate below neurotoxic level and harmful receptor
overstimulation [13,27,28,42,43,44]. So far several
subtypes of excitatory amino acid transporters (EAATs)
have been cloned from mammalian tissue [3,10,18,42].
Two glutamate uptake blockers: threohydroxyaspartate
(THA) and L-trans-pyrrolidine-2, 4-dicarboxylate (PDC)
were identified as a potent inhibitor of EAAT 1-5 [14,32].
There is a growing evidence that reactive oxygen
species (ROS) are involved in the pathogenesis of MNs
degeneration in ALS [5,40]. Neurodegeneration may be
a consequence of various mode of cell death induced
and regulated by variety of intracellular and
extracellular insults. There is a considerable
controversy whether neurons injured via excitotoxic
mechanism die by apoptosis or necrosis [8,31]. Some
reports suggested that MNs death in ALS is mainly
apoptotic [25,45]. It has been documented that
caspases, essential for apoptotic cell death, are
involved in MNs degeneration in patients with ALS [23].
The apoptotic mode of spinal MNs death has been also
shown after neonatal nerve cell injury [19]. In vitro
model of MNs toxicity caused by the chronic inhibition
of mitochondrial electron transport led to
a dose-dependent apoptotic death in cultured isolated
motor neurons sensitive to oxidative stress [16]. On the
other hand both modes of neuronal death such as
necrosis and apoptosis have been evidenced in
different preparation. The current belief is that cell
death does not always represent a uniform event but is
often a continuum of apoptotic and/or necrotic mode
of death [11,31]. 

This morphological study of MNs degeneration in
a model of ALS in vitro revealed ultrastructural features
typical of a different type of cell injury. THA and PDC
produced MNs degeneration in a dose dependent
fashion. Ultrastructurally, MNs displayed either the
pure and complete characteristics of necrotic, apoptotic

and autophagocytic cell death or most often a mixture
of different types of cell injury resulted in
apototic-necrotic or apoptotic-autophagic continuum.
The variation of ultrastructural features suggests that
MNs death may occur along a complete or exclusive
apoptotic, necrotic or autophagocytic pathway or as
concurrently appearing different mode of cell death. It
is well known that different toxic stimuli start the
apoptotic program of cell death, which may be either
completed or may be interrupted and progress
a different way of cell damage. Increasing evidence
shows that different modes of neuronal degeneration
may coexist in various pathological conditions [4,11,26]. 

The present results suggest that MNs can die in
different ways, including apoptosis, necrosis and
autophagocytic degeneration, and that the continuum
between apoptosis and necrosis or apoptosis and
autophagocytosis in neurodegenerative conditions in
vitro may exist. 
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