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A b s t r a c t

Introduction: Accumulated evidence shows that the cAMP-PKA signaling pathway plays a key role in memory func-
tions. Cyclooxygenase-2, a critical player in neuroinflammation, has been confirmed in the pathogenesis of neuro-
degenerative diseases. This study is aimed to assess the effect of the interaction of cAMP-PKA and cyclooxygenase 
pathways on spatial memory acquisition in animal models.
Material and methods: In the present study, the effects of the four-day bilateral intra-hippocampal infusions of H-89 
as a protein kinase AII inhibitor (10 μM/side), celecoxib (0.1 M/side) as a selective cyclooxygenase-2 inhibitor, cele
coxib/H-89 and bucladesine (10 μM/side)/celecoxib/H-89 on spatial memory acquisition in the Morris water maze were 
investigated. Control animals received bilateral intra-hippocampal infusions of dimethyl sulfoxide. Rats were trained for 
4 days; each day included one block of four trials. Post-training probe trial tests were performed on day five.
Results: A bilateral intra-hippocampal infusion of H-89 and celecoxib led to a significant impairment in spatial learn-
ing compared to the controls through a notable decrease in escape latency and traveled distance. But, combination 
treatment of animals with celecoxib/H-89 and bucladesine/celecoxib/H-89 could considerably reverse celecoxib and 
H-89-induced spatial memory acquisition impairments in the Morris water maze.
Conclusions: These results indicate the probable regulatory effects of cAMP/PKA and cyclooxygenase-2 signaling 
pathways on spatial memory acquisition in the Morris water maze. 
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Introduction

The hippocampus and the adjacent cortex are 
broadly acknowledged structures for memory pro-
cesses [31]. A considerable body of evidence about 

hippocampal lesion-induced learning and memory 
deficits has confirmed the vital role of the hippocam-
pus as represented by synaptic plasticity in formation 
of memory [1,31].
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Recent studies have supported the essential 
function of cAMP/PKA signaling pathway in the final 
phases of memory consolidation [12]. PKA-induced 
CREB phosphorylation in the hippocampus accompa-
nied by sensitivity to inhibitors of gene transcription 
and protein synthesis during PKA active periods, sug-
gest the important role of this signaling pathway in 
long-term memory formation [12]. Moreover, previous 
published data on intra-hippocampal infusion of H-89 
as a selective PKA II inhibitor and dibutyryl cyclic AMP 
(bucladesine) as a  membrane permeable selective 
activator of PKA into the CA1 region of the hippocam-
pus, plus behavioral and immuno-histochemical find-
ings have suggested the importance of PKA in spatial 
memory retention and its regulation of cholinergic 
gene expression [2,27,30]. Several studies indicated 
that PKA signaling pathway inhibition led to learning 
and memory deficiency [8,21] and enhancement of 
apoptosis and autophagy [14]. Cyclooxygenase (COX) 
is the key enzyme that converts arachidonic acid 
to prostaglandins [33]. Two unique cyclooxygenase 
genes (COX-1 and COX-2) and a  putative third iso-
form (COX-3) as a  splice variant of the COX-1 tran-
script have been identified [13]. Of the three isozymes 
of COX that have been known, COX-2 has attracted 
a  growing attention because of its involvement in 
cognitive functions and inflammatory processes [33]. 
Investigations of the inflammatory signaling path-
ways to determine potential interaction of COX with 
learning and memory have demonstrated that cele-
coxib as a COX-2 selective inhibitor could impair the 
spatial memory acquisition and retention in rodents 
[1,26]. COX-2 protein has been recognized particular-
ly in the cortex, hippocampus, amygdala and dorsal 
horn of the spinal cord of both rodent’s and human 
central nervous system (CNS) [13].

On the other hand, glutamate is a major excitato-
ry neurotransmitter in the brain involved in numerous 
brain functions, such as synaptic plasticity, learning 
and memory [11]. It is important to note that the co- 
localization of COX-2 protein with glutaminergic neu-
rons in dentate gyrus and CA1–CA3 pyramidal layers of 
the hippocampus confirms the link of neuronal COX-2 
expression with excitatory activity in CNS [13].

In the present study, the intra-hippocampal effects 
of H-89, celecoxib, and also interactive effects of cele-
coxib/H-89 and bucladesine/celecoxib/H-89 on spa-
tial learning acquisition in the Morris water maze 
(MWM) were investigated.

Material and methods

Animals

Male Wistar rats (180-220 g, purchased from the 
Faculty of Pharmacy, Zabol University of Medical Sci-
ences, were housed at 25 ± 2°C with a 12-h light/dark 
cycle and free access to food and water. All animal 
procedures were done in accordance with the Ethical 
Committee guidelines for the care and use of laborato-
ry animals of the Zabol University of Medical Sciences.

Drugs

Celecoxib, H-89 [n-(2-aminoethyl)-5-isoquino-
line-sulfonamide] and bucladesine (dibutyryl cAMP, 
DB-cAMP) were purchased from Sigma (St. Louis, 
MO) and dissolved in DMSO (dimethyl sulfoxide) to 
obtain desirable concentrations (0.1 M, 10 μM and 
10 μM, respectively). Ketamine (100 mg/kg, i.p.) and 
xylazine (25 mg/kg, i.p.) were used for induction of 
anesthesia for stereotaxic surgery.

Surgery and drug infusions

After induction of anesthesia, bilateral cannula-
tion in the CA1 region of the hippocampus was per-
formed using a  stereotaxic instrument according to 
Paxinos and Watsons atlas of the rat brain [9,24]. 
Bilateral intra-hippocampal infusions of 1 μl/side of 
celecoxib (0.1 M), H-89 (10 μM), bucladesine (10 μM) 
and DMSO were carried out through the guide cannu-
la. All infusions were done 30 minutes before train-
ing each day. In combination treatments, celecoxib + 
H-89 or bucladesine + celecoxib + H-89, the infusion 
procedure involved a  5 minutes’ interval between 
each microinjection.

Behavioral trainings and learning 
assessments

Four-day training (including one block of four trials) in 
MWM was performed according to our previous studies 
[16,27]. Spatial acquisition was assessed through mea-
suring escape latency, traveled distance, and swimming 
speed by the EthoVision video tracking system (Noldus 
Information Technology, Wageningen, the Netherlands) 
as described previously [3,26-28,30]. Post-training probe 
trial tests were performed on day 5 to examine the time 
spent in the target quadrant (the quadrant included 
a hidden platform during training trials). In the probe tri-
al test, the hidden platform was removed and animals 
were allowed to swim freely for 90 seconds.
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Experiments
Experiment 1

In the first experiment, the effects of bilateral 
intra-hippocampal infusions of H-89 (10 μM/side) 
and celecoxib (0.1 M/side) in a volume of 1 μl/side 
on spatial learning acquisition were explored. Con-
trol animals received 1 μl/side DMSO.

Experiment 2

The purpose of this experiment was to examine 
(i): the interactive effects of celecoxib (0.1 M/side) 
and H-89 (10 μM/side), and (ii): effects of interaction 
of bucladesine, celecoxib and H-89 on spatial learning 
acquisition in MWM. The animals received bilaterally 
combination doses of bucladesine (10 μM/side), cele-
coxib (0.1 M/side) and H-89 (10 μM/side) respective-
ly in the CA1 region of the hippocampus. The time 
interval between each microinjection was 5 minutes. 
Post-training probe trial tests were performed in both 
experiments on day 5 to determine the time spent in 
the target quadrant.

Statistical analysis 

Unpaired t-test, one-way analysis of variance 
(ANOVA) and two-way ANOVA followed by Bonfer-
roni’s post hoc test, using Graph Pad Prism 5 were 
used to compare the results of our behavioral stud-
ies. The statistical significance was considered at  
p values less than 0.05.

Results 

Experiment 1: Effects of celecoxib  
and H-89 on spatial learning in MWM

The results of the four-day training program in 
H-89 (10 μM/side)- and celecoxib (0.1 M/side)-treat-
ed animals and their related controls are present-
ed in Figures 1 and 2. The rats receiving bilateral 
intra-hippocampal infusion of either H-89 or celecox-
ib showed a significant increase in both traveled dis-
tance (**p < 0.01, Figs. 1A and 2A) and escape latency 
(**p < 0.01, Fig. 1B and ***p < 0.001, Fig. 2B) param-
eters compared to control groups, while no signifi-
cant differences were found in the swimming speed 

Fig. 1. An average of traveled distance (A), escape latency (B), and swimming speed (C) during four training 
days in the Morris water maze task in H-89-treated animals. **p < 0.01 shows a considerable difference as 
compared to the control (DMSO) group. Values represent means ± SEM of 6 animals in each group.

Fig. 2. An average of traveled distance (A), escape latency (B) and swimming speed (C) during four training 
days in the Morris water maze task in celecoxib-treated animals. **p < 0.01 and *** p < 0.001 show a sig-
nificant difference as compared to the control (DMSO) group. Values represent means ± SEM of 6 animals 
in each group.
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between these animals (p > 0.05) in comparison 
to controls (Figs. 1C and 2C). Considering the same 
training days in these treated animals, infusion of 
H-89 caused significant memory impairments via 
increasing traveled distance and escape latency at 
the fourth (*p < 0.05) day of training (Fig. 3A and 
3B) in comparison to the controls (DMSO-treated). 
In addition, a  significant increase in the traveled 
distance and escape latency at the third and fourth 
(*p < 0.05) day of training were observed in cele-
coxib-treated animals in comparison to the controls 
(Fig. 4A and 4B).

Experiment 2: Effect of co-administration 
of celecoxib/H-89 and bucladesine/
celecoxib/H-89 on spatial learning  
in MWM

Figure 5 demonstrates the results obtained from 
(i): intra-hippocampal infusion of H-89 (10 μM/side), 
5 minutes after celecoxib (0.1 M/side) administra-
tion and (ii): infusion of bucladesine (10 μM/side), 
celecoxib (0.1 M/side, i.h.) and H-89 (10 μM/side, i.h.) 
with a time interval of 5 minutes, respectively. There 
were significant differences in traveled distance 
(#p < 0.05, Fig. 5A) between the celecoxib/H-89 or 
bucladesine/celecoxib/H-89 groups compared to 
H-89-treated animals during four days of training. 
Similarly, there was a significant increase in the trav-
eled distance (Fig. 5A) between the celecoxib/H-89 
(+p < 0.05) and bucladesine/celecoxib/H-89 (++p < 0.01) 
group compared to celecoxib-treated animals during 
four days of training.

Regarding the escape latency parameter, there 
was a significant difference between the celecoxib/ 
H-89 or bucladesine/celecoxib/H-89 groups com-
pared to H-89- (#p < 0.05, Fig. 5B) and also celecoxib 
(+++p < 0.001, Fig. 5B)-treated animals during four 
days of training.

Considering the swimming speed, no significant 
differences were found (p > 0.05, Fig. 5C) between 
control, celecoxib/H-89- and bucladesine/celecoxib/ 
H-89-treated animals.

Interestingly during the same training days, there 
were considerable differences among celecoxib/ 
H-89 or bucladesine/celecoxib/H-89 groups in the 
traveled distance and escape latency parameters at 
the fourth day of training compared to celecoxib- 
(+p < 0.05, Fig. 6A and 6B) and H-89 (#p < 0.05,  
Fig. 7A and 7B)-treated groups.

Evaluation of the probe trial test  
in H-89, celecoxib, celecoxib/ 
H-89 and bucladesine/celecoxib/ 
H-89-treated animals in MWM

Intra-hippocampal infusion of H-89 (10 μM/
side) and celecoxib (0.1 M/side) caused a significant 
decrease (***p < 0.001) in the time spent in the target 
quadrant compared to control groups. On the oth-
er hand, the time spent in the target quadrant was 
increased significantly in animals treated with a com-
bination of celecoxib/H-89 or bucladesine/celecoxib/ 
H-89 compared to H-89 (###p < 0.001) or celecoxib 
(+++p < 0.001)-treated animals (Fig. 8).

Fig. 3. Assessment of traveled distance (A) and escape latency (B) on the same training day in H-89-treated 
animals. A substantial increase in the traveled distance and escape latency was observed in the H-89 group 
(*p < 0.05) on day 4. Data are presented as means ± SEM of 6 animals in each group.
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Fig. 4. Evaluation of traveled distance (A) and escape latency (B) on the same training day in celecoxib- 
treated animals. A considerable increase in the traveled distance and escape latency was observed in the 
celecoxib group (*p < 0.05) on days 3 and 4. Data are presented as means ± SEM of 6 animals in each group.
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Discussion

To evaluate the potential interaction of cAMP/PKA 
and COX-2 signaling pathways, the drugs – buclade
sine, a  selective activator of PKA, H-89 as a  PKA II 
inhibitor, and celecoxib as a selective COX-2 inhibitor 
were used in this study. H-89- and celecoxib-treated 
animals were not trained well and showed a remark-
able increase in time and distance to find the hidden 
platform. Moreover a significant decrease in the time 
spent in the target quadrant was observed in com-
parison to control animals.

The importance of cAMP-dependent PKA in the 
expression of long-term potentiation, long-term depres

sion, hippocampal long-term memory, and synaptic 
plasticity had been reported previously [30]. Also it 
has been proposed that the hippocampal cAMP/PKA 
pathway could be activated following NMDA recep-
tor-mediated Ca2+ influx via stimulation of adenylate 
cyclase activity, cAMP accumulation, and PKA and 
CREB phosphorylation [12].

It has been claimed that intra-hippocampal 
bucladesine infusion could improve spatial memo-
ry retention via synergistic interaction with nicotine 
as represented by significant increases in ChAT and 
VAChT protein expressions in the CA1 region and 
medial septal area of the hippocampus [2,30]. On the 
other hand, post training intra-hippocampal infusion 

Fig. 6. Investigation of traveled distance (A) and escape latency (B) on the same training day in celecoxib-, 
celecoxib/H-89- and bucladesine/celecoxib/H-89-treated animals. *p < 0.05, describes a considerable dif-
ference as compared to the control (DMSO) group. +p < 0.05 shows a meaningful difference as compared to 
the celecoxib-treated group. Values represent means ± SEM of 6 animals in each group.
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of H-89 in our previous studies [27] could damage 
spatial memory retention as evidenced by the quali
tative and quantitative decrease in the density of 
ChAT-containing cholinergic nerve terminals in the 
dorsal hippocampus and medial septum. Similarly, 
bilateral intra-hippocampal infusion of H-89 in the 
present study impaired spatial learning in animals. 
These findings suggest the pivotal role of PKA II in 
regulation of cholinergic gene expression and spatial 
memory acquisition and retention in rats.

The key function of prostaglandin E2 (the predom-
inant reaction product of COX-2) in neural plasticity 
as well as modulatory effects of prostaglandins on 
adrenergic, noradrenergic, and glutaminergic trans-
mission have been investigated in previous studies. 
In addition, the regulatory effects of acetylcholine 
on COX-2 activity have suggested the interaction of 
the prostaglandin pathway and the cholinergic sys-
tem in neuronal plasticity. However, there are some 
controversial findings about other physiological and 
pathological functions of COX-2 in the CNS [26]. It 
has been shown that endogenous basal levels of 
PGE2 production following COX-2 activity are essen-
tial for acquisition of memory and synaptic plastici-
ty [7]. Inhibition of COX-2 suppresses glutamatergic 
neurotransmission and long-term potentiation in 

the hippocampus. These events are mostly mediat-
ed by prostaglandin E2 [6,20] which consequently 
increases glutamate release [22]. Celecoxib is a high-
ly selective cell permeable COX-2 inhibitor [25] and 
might prevent glutamate release by reducing the 
levels of Ca2+ entry through the Cav2.2 (N-type) and 
Cav2.1 (P/Q-type) Ca2+ channels that are linked to 
glutamate exocytosis in the nerve endings [19].

It has also been proven that bilateral infusion 
of 0.1 M/side celecoxib could significantly damage 
spatial memory retention which persisted for 3 days, 
while nicotine could prevent the celecoxib-induced 
impairment by restoring the immunostaining pat-
tern of COX-2 neurons in the rat dorsal hippocampus 
[26,28,29]. This study, in agreement with previous 
publications on spatial memory retention, demon-
strates a probable role for COX-2 in spatial memory 
acquisition.

In contrast with our study, Yang et al. demonstrat-
ed that celecoxib treatment in diabetic rats could 
improve memory impairments through reduction of 
hippocampal COX-2 expression and increase in the 
BDNF-TrkB signaling pathway [34]. It has also been 
indicated that chronic unpredictable mild stress 
could increase COX2 expression and consequently 
learning and memory deficiency because of hippo-
campal cAMP/PKA-CREB-BDNF signaling activation 
[18]. Beneficial effects of COX2-specific inhibitors 
have been reported in treatment of the traumatic 
brain injury [10]. These findings may be obtained 
due to the use of COX2 inhibitors under the inflam-
mation condition. But we investigated the effects of 
celecoxib in lack of inflammatory responses. Due to 
contradictory findings about the role of the cyclooxy-
genase pathway in learning and memory processes, 
it has been realized that different factors including 
the type of the experimental task, employed pro-
tocol, stage of memory formation and some patho-
logical factors such as inflammatory conditions are 
involved in COX activity on memory functions.

In this work, co-administration of celecoxib/H-89 
and bucladesine/celecoxib/H-89 could protect or 
reverse H-89- and celecoxib-induced spatial memory 
acquisition deficits in MWM.

It has been reported that salicylate can decrease 
apoptosis and autophagy induced by H-89 [4].

Interestingly, the protective effects of H-89 on 
Aβ-induced memory impairment via a  reduction of 
NFκB, (factor of neuronal death), and decrease in 
oxidative stress factors have been proposed [8]. Also, 

Fig. 8. Measurement of time spent in the tar-
get quadrant in the probe trial test. ***p < 0.001 
shows a  significant difference as compared 
to the control group. ###p < 0.001 illustrates 
a  considerable difference as compared to the 
H-89-treated group. +++p < 0.001 displays a con-
siderable difference as compared to the celeco
xib-treated group. Values represent means ± SEM 
of 6 animals in each group.
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certain inflammatory cytokines have been identified 
which can induce COX-2 expression via an NF-kB 
pathway [15].

Based on previous records, NF-kB is involved in 
a  number of brain functions, especially in neurode-
generative diseases and after injury. Glutamate (via 
both AMPA/KA and NMDA receptors) and neurotro-
phins are brain-specific activators of NF-kB with 
regards to participation in synaptic plasticity [23]. 
Likewise, NF-kB serves a role in synaptic transmission 
through regulation of COX-2 neuronal expression [32].  
The COX-2 gene, induced by NF-kB, plays a key func-
tion in inflammation and carcinogenesis [5].

It has been asserted that celecoxib can prohib-
it release of glutamate from nerve endings through 
reduction of voltage-dependent Ca2+ entry via a sig-
naling mechanism including EP2 (prostaglandin E2 
(PGE2) receptors) and PKA. Therefore PKA inhibitors 
might prevent the inhibitory effect of celecoxib on 
the release of glutamate [17].

To investigate the role of dibutyryl cAMP in spa-
tial memory, we used the drug bucladesine, a selec-
tive activator of PKA. Previous studies suggested that 
intrahippocampal infusions of bucladesine improve 
spatial memory retention in male rats and inter-
act synergistically with nicotine to improve spatial 
memory [30]. Also, it has been reported that signifi-
cant increases in ChAT and VAChT protein expres-
sions, as cholinergic markers, in the CA1 region and 
medial septal area of the hippocampus are the pos-
sible mechanisms of spatial memory improvement 
induced by nicotine–bucladesine combination [2].

In conclusion, the improvement of spatial mem-
ory acquisition by celecoxib/H-89 and bucladesine/
celecoxib/H-89 in the present study, suggest the 
probable regulatory effects of cAMP/PKA and COX-2 
signaling pathways in spatial memory acquisition in 
MWM.
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