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A b s t r a c t

Astragaloside IV (AST-IV) is a major active ingredient of astragalus, with a neuroprotective effect. The current study is 
aimed to investigate the impact of AST-IV on the M1/M2 microglial activation in response to lipopolysaccharide (LPS) 
stimulation, how AST-IV attenuated microglia-mediated neuronal damage, and the molecular mechanisms underlying 
AST-IV’s protection of neurons against microglia-mediated neuronal damage. Our results showed that AST-IV partially 
protected microglia from death evoked by LPS and downregulated the release of pro-inflammatory (M1) mediators 
including interleukin (IL)-1β, IL-6, tumour necrosis factor α (TNF-α) and nitric oxide, as well as the expression of Toll-like 
receptors 4 (TLR4), MyD88, and nuclear factor κB (NF-κB) of these cells. In contrast, AST-IV elevated the production of 
anti-inflammatory cytokine IL-10 and expression of arginase 1, an M2 marker of microglia, whose conditioned medium 
promoted PC12 neurons survival. These results indicate that AST-IV exerts an anti-inflammatory effect on microglia, 
possibly through inhibiting TLR4/NF-κB signalling pathways, and protects neurons from microglia-mediated cell death 
through conversion of microglia from inflammatory M1 to an anti-inflammatory M2 phenotype.
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Introduction

Microglia, the innate immune cells in the cen-
tral nervous system (CNS), can remove the dam-
aged nerves, patches, infectious substances, secrete 
immune regulatory factors, and protect neurons. 
Excessive activation of microglia, however, is the 
cause of neurodegenerative diseases such as Alzhei-
mer’s disease (AD), multiple sclerosis (MS), Parkin-
son’s disease (PD) and amyotrophic lateral sclerosis 
(ALS) [5,14,27]. Activated microglia release a  lot of 
nerve toxicity factors such as nitric oxide (NO) and 

superoxide free radicals (ROS) and inflammatory 
factors, and lead to neurodegenerative disease [29]. 
Thus, it has a great significance for the regulation of 
activated microglia to treat various neurodegenera-
tive diseases.

Neuroinflammation contributes to a  wide vari-
ety of neurodegenerative diseases, and is strongly 
linked with neuronal loss or dysfunction in these 
diseases. The activation of microglia plays a  key 
role in neuroinflammation and activated micro- 
glia kill neurons through a number of mechanisms, 
such as acute activation of the phagocyte NADPH 



171Folia Neuropathologica 2019; 57/2

Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization

oxidase (PHOX), expression of the inducible nitric 
oxide synthase (iNOS) and release of inflammatory 
factors [4]. Like peripheral macrophages, microglia 
activation has been characterized by a  recognized 
number of phenotypes: namely, the surveillant/non-
polarized phenotype (M0), the classic activation type 
(M1) and the selective activation type (M2) [7]. The 
M1 phenotype or classical activated microglia can 
be induced by lipopolysaccharide (LPS), interferon γ 
(IFN-γ), tumour necrosis factor α (TNF-α), hypoxia, 
and β-amyloid with increased production of proin-
flammatory cytokines, chemokines and oxidative 
metabolites such as TNF-α, interleukin 1β (IL-1β), 
IL-6, iNOS, NO, matrix metalloproteinases (MMPs) 
reactive oxygen and nitro active species, there-
by exacerbating inflammation and contributing 
to neuron damage and death. In contrast, M2-like 
microglia can suppress inflammation and promote 
neural repair and regeneration by secreting anti-in-
flammatory cytokines, such as transforming growth 
factor β (TGF-β), IL-4, IL-10, and neurotrophic factors 
such as glial cell-derived neurotrophic factor (GDNF), 
brain-derived neurotrophic factor (BDNF) and plate-
let-derived growth factor (PDGF) [18]. Induction of 
M2-like microglia is, therefore, an attractive strategy 
for the treatment of neurological diseases with neu-
roinflammation based on their protective functions. 

Astragaloside IV (AST-IV) is a  small molecular 
saponin and a  major active ingredient of Astraga-
lus membranaceus, a widely used traditional herbal 
medicine. It was reported that AST-IV exerted anti- 
inflammatory, antivirus, anti-aging, immunomodula-
tory, and organ protective effects [26,38]. AST-IV can 
reduce the damage and apoptosis of hippocampal 
neurons in rats and promote the survival of primary 
cells in the cerebral cortex and the growth of axons 
[10,13]. In vivo experiments also proved that AST-IV 
can reduce CNS damage, alleviate the incidence of 
EAE mice, reduce the loss of dopamine neurons, and 
have a neuroprotective effect [12].

To better understand the anti-inflammatory 
capacity of AST-IV in the CNS, microglia were stimu-
lated by LPS, the effect of AST-IV was examined and 
the molecular mechanism was discussed. This study 
will provide a  potential for AST-IV application in  
neurodegenerative diseases.

Material and methods

BV-2 cell culture and treatment

The BV-2 immortalized microglial cell line was 
purchased from the National Infrastructure of Cell 
Line Resource, Beijing, China, and cultured in Dul-
becco’s modified Eagle medium (DMEM; Gibco, 
Grand Island, NY, USA), supplemented with 10% foe-
tal bovine serum (FBS; HyClone, Logan, Utah, USA), 
100 U/ml penicillin, and 100 μg/ml streptomycin 
(Gibco) at 37°C in a humidified cell incubator with 
a 95%/5% (v/v) mixture of air and CO2.

AST-IV is major active component of astragaloside 
that is obtained from traditional Chinese medicine 
Astragali radix (Sigma, St. Louis, MO, USA). After BV-2 
cells had been cultivated overnight, LPS (Sigma) was 
added at a final concentration of 1 μg/ml and AST-
IV was added at final concentrations of 1 μM/l and  
5 μM/l. Wells added only with PBS served as con-
trols. Cells in all groups were then cultured for 24 h.

PC12 cell culture 

Pheochromocytoma (PC12) neurons were cultu- 
red in DMEM, supplemented with 10% FBS, 100 U/ml 
penicillin, and 100 μg/ml streptomycin at 37°C in 
a  humidified cell incubator with a  95%/5% (v/v) 
mixture of air and CO2. Cells were subcultured 
3 times a week at a density of 5 × 105/ml and incu-
bated with BV-2-conditioned medium for 24 h.

Cell viability

Cell viability of BV-2 microglia was measured by 
MTT assay. Briefly, BV-2 cells (4 × 104/ml) were inoc-
ulated on 96-well plates, and cultured with AST-IV  
(0, 0.5, 1, 2, 5, 10, 20, 50, 100 μmol/l) for 24 h, or 
cultured with BV-2-conditioned medium for 24 h. 
Then 100 μl of 0.5 mg/ml MTT solution was added 
to each well, and the plates were incubated at 37°C 
for an additional 4 h. Plates were then centrifuged 
to remove the supernatants, and the crystals were 
dissolved in 150 μl of DMSO. Cell viability was mea-
sured by the optical density (OD) at 490 nm using 
a  quantified microplate reader (Biotek Labsystem, 
Vermont, USA). All results were confirmed by repli-
cation in at least 3 independent experiments. Cell 
viability (%) = (OD value of the experimental well 
– OD value of the zero-setting well) / (OD value of 
the control well – OD value of the zero-setting well) 
× 100%.
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Nitrite assay

Nitric oxide was assayed by the Griess reaction to 
measure the end product nitrite. Supernatants of cul-
tured cells (100 μl) were mixed with 100 μl of Griess 
reagent for 10 min at RT. Absorbance was measured 
at 510 nm in a  quantified microplate reader. Con-
centrations of nitrite were determined by a  standard 
curve of sodium nitrite (Beyotime, Shanghai, Chi-
na). Determinations were performed and repeated in  
3 independent experiments.

Cytokine ELISA assay

Collected supernatants were measured for the con-
centrations of IL-1β, IL-6, TNF-α, IL-4, and IL-10 by sand-
wich ELISA kits (PeproTech, Rocky Hill, NJ, USA) following 
the manufacturer’s instructions. All results were repeat-
ed in 3 independent experiments. Concentrations of 
cytokines were quantified by referencing to a standard 
curve and expressed as pg/ml.

Western blot analysis

Homogenized cells were dissolved in RIPA Lysis Buf-
fer (Beyotime) supplemented with protease inhibitors. 
Protein concentration was measured by BCA (Beyotime). 

Cell extracts (30 μg) were loaded onto 10% SDS-poly-
acrylamide gels, transferred onto a nitrocellulose mem-
brane (Merck Millipore, Tullagreen Carrigtwohill, Cork, 
Ireland), blocked by 5% milk at room temperature (RT) for 
2 h. Membranes were incubated at 4°C overnight with 
primary antibodies Toll-like receptors 4 – TLR4 (1 : 1000, 
2246, Cell Signaling, Boston, USA), nuclear factor κB – 
NF-κB (p65) (1 : 1000, 30335, Cell Signaling), myeloid 
differentiation factor – MyD88 (1 : 1000, ab2064, Abcam, 
Cambridge, UK), IL-1β (1 : 1000, Abcam, ab200478), iNOS  
(1 : 1000, ADI-905-431-1, Enzo Life Sciences, NY, USA), 
Arg-1 (1 : 1000, 610708, BD Biosciences, NY, USA), and 
β-actin (1 : 10,000, 4970, Cell Signaling). Horseradish per-
oxidase-conjugated secondary antibody goat anti-mouse 
(1 : 10,000, E030110-01, Earth, San Francisco, CA, USA) and 
goat anti-rabbit (1 : 10,000, E030120-01, Earth) were incu-
bated for 2 h on the next day. Immunoblots were measured 
by Quantity Software (Bio-Rad, Hercules, CA, USA). To com-
pare the protein loading, β-actin was used as the optical 
density of internal reference.

Immunofluorescent staining

BV-2 microglia were cultured and treated based on 
experimental requirements in a 24-well plate with slides. 
BV-2 microglia were fixed with 4% paraformaldehyde 
for 30 min and stained with the following antibodies: 
TLR4 (1 : 1000), NF-κB (1 : 1000), iNOS (1 : 1000), Arg-1 
(1 : 1000), and kept overnight at 4°C. The next day, Alexa 
Fluor 488-conjugated secondary antibodies (1 : 1000; 
Invitrogen, Eugene, USA) or Alexa Fluor 555-conjugated 
secondary antibodies (1 : 1000; Invitrogen) were added 
at RT for 2 h. The stained slides were examined by fluo-
rescence microscope (Olympus, Tokyo, Japan).

Results

Effect of AST-IV on microglia viability

The viability of BV-2 microglia at different AST-IV 
concentrations was tested by MTT. The effect of AST-IV 
on the viability of BV-2 microglia viability of less than or 
equal to 5 μmol/l did not exhibit any statistical differ-
ence (p > 0.05) compared with the control group (Fig. 1).  
Cell viability was markedly decreased after exposure to 
10 μmol/l of AST-IV, indicating that a higher dose of AST-
IV is cytotoxic. The dose of AST-IV is different from that 
in other articles, on account of DMSO as the auxiliary 
solvent, which may have an effect on cell toxicity. Con-
centrations of AST-IV at 1 and 5 μmol/l were, therefore, 
used in the following experiments. 

Fig. 1. The cell viability did not exhibit any statisti-
cal difference after exposure to less than or equal 
to 5 μmol/l and was markedly decreased after 
exposure to 10 μmol/l of AST-IV. The BV-2 cells 
were cultured in 96-well plates in the absence or 
presence of AST-IV (0, 0.5, 1, 2, 5, 10, 20, 50, 100 
µmol/l) for 24 h. Cell viability was measured by 
the MTT assay. The quantitative analysis was per-
formed based on 3 independent experiments with 
similar results. **p < 0.01, ***p < 0.00 vs. 0 µmol/l.
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Effect of AST-IV on microglia 
morphology and nitric oxide 
production

Resting BV-2 microglia is characterized by 
rounded and fusiformis cell bodies, clear in cell 
edge and bright cytoplasm, whereas activated 
BV-2 cellular morphology like a  broken egg or 
a worm, swollen cell body, blur in the edge, and 

dim cytoplasm. Cell morphology changed after 
24 h of treatment with PBS, LPS (1 μg/ml) and 
AST-IV (1 and 5 μmol/l). A  resting morphology 
was observed in PBS-treated microglia, and cells 
treated with LPS exhibited an activated one  
(Fig. 2A). In contrast, microglia activation was 
inhibited by AST-IV, which showed a resting mor-
phology. 

Fig. 2. AST-IV inhibited the activation of BV-2 cells that were treated with LPS and showed a resting mor-
phology. AST-IV effectively inhibited the production of NO. The BV-2 cells were cultured in 24-well plates 
in the absence or presence of LPS (1 μg/ml)/AST-IV (1 μmol/l and 5 μmol/l) for 24 h. The cell morphology 
was obtained by bright field imaging using an inverted Olympus microscope. Representative pictures were 
exhibited on BV-2 cells (A), and release of NO was detected by Griess assay (B). The quantitative analysis 
was performed based on 3 independent experiments with similar results. ∆∆p < 0.01 vs. LPS(–) AST-IV(–), 
**p < 0.01 vs. LPS(+) AST-IV(–).
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The production of nitrite, a major end product 
of NO metabolism, was detected in the superna-
tants of BV-2 cells by Griess reagent. The results 
showed that LPS strongly stimulated the produc-
tion of nitrite (Fig. 2B; p < 0.01), and this pro-
duction was effectively inhibited by AST-IV treat-
ment (Fig. 2B; p < 0.05).

Effect of AST-IV on LPS-induced TLR4/
MyD88/NF-κB signalling in BV-2 cells

Toll-like receptors (TLRs) are a key component of the 
innate immune system that defences against pathogens 
and the development of adaptive immunity, releases 
cytokines, increases costimulatory molecule expression, 

Fig. 3. AST-IV significantly inhibited the expression of Myd88, TLR4 and NF-κB in BV-2 cells. The BV-2 cells 
were cultured in 24-well/6-well plates in the absence or presence of LPS (1 μg/ml)/AST-IV (1 μmol/l and  
5 μmol/l) for 24 h. Protein levels of TLR4 and NF-κB were measured by immunocytochemistry staining 
(A and B) and Western blot assay (C). Quantitative results are from three independent experiments with 
similar results. ∆p < 0.05, ∆∆p < 0.01 vs. LPS(–) AST-IV(–), *p < 0.05 vs. LPS(+) AST-IV(–).
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and provides the necessary activated signal to form  
the acquired immune reaction. Myeloid differentia-
tion factor (MyD88) is a key joint molecule in the TLRs 
signal path. MyD88 contains two domains, one is car-
boxyl terminal homologous binding to TLRs, the other 
is amino acid terminal binding to the death domain of 
IL-1 receptor associate kinase (IRAK), which causes IRAK 
phosphorylation. A series of activated reaction causes 
the activation of Iκbα, eventually leads to activate NF-κB 
and transposition, releases of inflammatory cytokines, 
which induces inflammatory response process.

We then determined the expression of TLR4, 
MyD88 and NF-κB, all important M1-like mole-
cules, by immunostaining. Our results showed 
that the expression of these molecules was upreg-
ulated by LPS stimulation, and TLR4 and NF-κB 
expression was inhibited after AST-IV treatment 
(Fig. 3A, B). Similar results were observed by West-
ern blot, which showed significantly inhibited TLR4 
and NF-κB expression by AST-IV treatment at both 
concentrations of 1 and 5 μmol/l, while MyD88 
expression was inhibited when 5 μmol/l of AST-IV 
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was added (Fig. 3C; p < 0.05). Thus, AST-IV exerts 
a  suppressive effect on TLR4-MyD88 signalling 
pathway.

Effect of AST-IV on LPS-induced 
microglia polarization

We then studied whether AST-IV can trigger the 
polarization of BV-2 microglia, and shift from 
inflammatory M1 cells toward anti-inflammato-
ry M2 cells. As shown in Figure 4, LPS stimulated 
the upregulation of IL-1β and iNOS (p < 0.01,  
p < 0.000), and the treatment of AST-IV effec-
tively inhibited the expression of IL-1β and iNOS 
(Fig. 4; p < 0.05, p < 0.05, p < 0.000). In contrast, 
AST-IV treatment upregulated Arg-1 expression 
(Fig. 4, p < 0.05, p < 0.01). The results clearly indi-
cated that AST-IV treatment converted LPS-induced 

inflammatory M1 phenotype toward an anti-inflam-
matory M2 phenotype.

Effect of AST-IV on cytokine production 
of microglia

To further address the effect of AST-IV on the 
microglia phenotype, cytokines IL-6, TNF-α, IL-4 
and IL-10 in BV-2 microglia culture supernatants 
were measured by ELISA. LPS stimulated BV-2 cells 
to produce higher amounts of IL-6 (p < 0.01), TNF-α 
(p < 0.05) but reduced IL-10 (p < 0.01) compared 
to non-stimulated cells (Fig. 5). The production of 
IL-6 and TNF-α was significantly inhibited when 
treated by AST-IV (all p < 0.01). In addition, treated 
by AST-IV increases IL-10 production compared to 
that treated with LPS (Fig. 5, p < 0.05). Meanwhile, 
AST-IV treatment had a tendency to increase IL-4 
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production, while it did not reach statistical signif-
icance (Fig. 5).

BV-2-conditioned medium treated 
with AST-IV exhibits a neuroprotective 
effect 

Finally, we collected BV-2 microglia-conditioned 
medium treated with AST-IV (1 and 5 μmol/l) and 
determined its neuroprotective effect when expos-
ing cultured PC12 neurons, using MTT assay. The 
results showed that, while supernatants of LPS-stim-
ulated microglia induced neuron death, AST-IV-con-
ditioned medium significantly increased cell viability 
compared to LPS-stimulated BV-2 microglia medium 
(Fig. 6, p < 0.05, p < 0.01).

Discussion

Microglia are unique resident immune cells and 
major cellular source of inflammatory mediators in 
the CNS, and a key player in the inflammatory pro-
cesses related to neurodegenerative diseases [11]. 
Microglial activation is a double-edged sword in the 
CNS which are related to both the immune response 
and maintaining homeostasis [6,14]. Many studies 
have demonstrated that microglia/macrophages 
undergo M1 or M2 polarization in response to dif-
ferent environmental stimulation. M1 microglia/
macrophages can secrete a large number of inflam-
matory mediators and upregulate IL-1β and iNOS 
expression. These changes can create an inflam-
matory microenvironment and then promote the 
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pathogenesis of neurodegenerative diseases [15]. 
On the other hand, M2-polarized microglia/macro-
phages upregulate Arg-1 expression and increase 
anti-inflammatory IL-10 and IL-4 production, which 
can inhibit an inflammatory response and promote 
neuroprotection [2,28,33]. Inhibiting microglial acti-
vation and the release of pro-inflammatory media-

tors and promoting microglia polarization towards 
M2 phenotype may, therefore, be crucial for the 
treatment and neurodegenerative diseases. 

The morphology and function of microglia adapt 
to their ever-changing surroundings. Microglia in 
the resting state, participants in CNS homeosta-
sis, continuously scan the surrounding extracellu-
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lar space and communicate directly with neurons, 
astrocytes, and blood vessels [19]. When tumours, 
brain damage, infection, stroke attract, microglia 
transform into activated morphology, the pheno-
type, for responding to neuroinflammation. Activat-
ed microglia triggers a  complex molecular cascade 
including nitric oxide, oxygen free radicals, proteas-
es and inflammatory cytokines production, a  com-
plex inflammatory response, and the blood-brain 
barrier disruption, finally necrotic and apoptotic cell 
death [27]. Resting BV-2 microglia are characterized 
by round bodies, smooth-surface clear in cell edge 
and cytoplasmic bright, whereas activated BV-2 
cellular morphology like a broken egg or amoeboid 
cell shape, swollen cell body, blur in the edge, and 
dim cytoplasm [3]. The present study observed that  
AST-IV treated LPS-induced BV-2 cells retained 
the shape that is characteristic of non-stimulated 
microglia, indicating an inhibitory effect of this small 
molecule on microglia activation. 

The activated microglia release inflammatory 
cytokines including IL-6, TNF-α, and other cytotoxic 
molecules such as NO [22]. Here, we found that IL-6, 
IL-1β and TNF-α levels increased in the LPS-treat-
ed only group, while AST-IV treatment could inhib-
it these abnormal increases and enhance IL-10 
secretion. These results demonstrate that AST-IV 
treatment exerts neuroprotective effects possibly 
through its anti-inflammatory properties. Further-
more, we selected the markers of M1 polarization, 
i.e. iNOS and IL-1β, as well as the markers of M2 
polarization, i.e. Arg-1. While M1 markers were sig-
nificantly declined, M2 markers were significantly 
increased in AST-IV treatment compared with LPS 
treatment. Thus, AST-IV can shift microglia from M1 
to M2 phenotype. 

AST-IV has been reported to exert anti-inflamma-
tory and neuroprotective effects in various disease 
models [21,31]. AST-IV-induced anti-inflammato-
ry effects indicate its potential application in the 
treatment of neuroinflammatory and neurodegen-
erative diseases [12,34]. AST-IV can attenuate the 
H2O2-induced apoptosis of neuronal cells and exert 
protective effects against neurodegenerative diseas-
es via the p38 MAPK pathway, and attenuate glu-
tamate-induced neurotoxicity in PC12 cells through 
Raf-MEK-ERK pathway [24,37]. In the present study 
we showed that AST-IV reduces microglial activation 
and attenuate microglia-mediated neuronal damage. 
These results provide evidence that the mechanism 

underlying the neuroprotective effects of AST-IV 
may occur through inhibiting microglial activation 
and shifts microglia from the M1 to M2 phenotype.

The diversity of the macrophage function is relat-
ed to many factors, including cytokines, chemokines, 
local micro environmental conditions, protein kinas-
es, hormones, TLR ligands, complement and other 
endogenous molecules [1,17,32]. Among them, TLRs 
play an important role in the innate immune sys-
tem [8]. Although TLR4 expressed on multiple cell 
lines, such as microglia, astrocytes and neurons, 
its expression is highest on microglia [20]. LPS is 
recognized by TLR4 on the surface of microglia 
and induces TLR4 activation, which subsequent-
ly recruits the adapter protein MyD88 and leads 
to the rapid activation of NF-κB. Overactivation of 
the NF-κB signalling pathway causes the excessive 
production of pro-inflammatory cytokines and trig-
gers an array of microglia responses leading to the 
release of inflammatory mediators [16,30]. A recent 
study has shown that LPS can shift microglia from 
M0 to M1 phenotype by stimulating the activation 
of TLR4/p-38/p-JNK/NF-κB signalling pathway [36]. 
LPS binds to TLR4 on the surface of microglia cells, 
resulting in the overexpression of proinflammato-
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Fig. 6. AST-IV-conditioned medium increases the 
survival of cultured PC12 neurons. BV-2 cells were 
cultured with LPS (1 μg/ml)/AST-IV (1 μmol/l and 
5 μmol/l) for 24 h, and conditioned media were 
collected. PC12 neurons were then incubated 
for 24 h with the different conditioned media. 
PC12 neurons viability were quantified with 
MTT. Quantitative results are expressed as mean 
± SEM from five independent experiments with 
similar results. ∆∆p < 0.01 vs. LPS(–) AST-IV(–), 
*p < 0.05, **p < 0.01 vs. LPS(+) AST-IV(–).

∆∆



180 Folia Neuropathologica 2019; 57/2

Jingwen Yu, Minfang Guo, Yanhua Li, Huiyu Zhang, Zhi Chai, Qing Wang, Yuqing Yan, Jiezhong Yu, Chunyun Liu, Guangxian Zhang, Ma Cungen

ry genes and over-secretion of pro-inflammatory 
molecules by NF-κB activation [25]. The activation 
and nuclear translocation of NF-κB is a key step in 
LPS-stimulated microglial activation, and regulates 
the expression of a  large number of inflammatory 
genes [9]. It has been reported that AST-IV exerted 
its anti-inflammatory effect via inhibition of gluco-
corticoid receptor-mediated NF-κB signalling [23], 
and attenuated release of inflammatory cytokines is 
related to inhibiting the TLR4/NF-kB signalling path-
way [35]. In this study, AST-IV suppressed the protein 
expression of TLR4, MyD88 and NF-κB of microglia, 
which probably resulted in the decreased production 
of pro-inflammatory molecules, and shifted these 
cells to the M2 phenotype. 

In conclusion, the present study demonstrates 
that AST-IV exerts anti-inflammatory effects and 
attenuates microglia-mediated neuronal damage. 
These effects are possible through inhibiting TLR4/ 
MyD88/NF-κB signalling pathways, thus reducing 
the expression of pro-inflammatory mediators in- 
cluding TNF-α, IL-1β, IL-6, iNOS, and inducing the 
expression of anti-inflammatory molecules, e.g., 
IL-10 and Arg-1, and regulating microglia polariza-
tion from inflammatory M1 to an anti-inflammatory 
M2 state. Our observations suggest that AST-IV has 
the potential to be used as a therapeutic agent for 
neurodegenerative diseases.
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