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A b s t r a c t

Our previous studies indicated that Alzheimer's disease (AD) related amyloid beta peptide (Aβ) significantly altered

muscarinic cholinergic receptor (mChR) signaling on the level of G protein regulated phospholipase C (PLC) leading to

the lower formation of inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Recent studies indicated that poly

(ADP-ribose) polymerase-1 (PARP-1) is a new nuclear target in signal transduction pathway in the brain. In this study the

effect of Aβ 25-35 (25 µM) and non-Aβ component of Alzheimer's disease amyloid (NAC, 10 µM) on mChR-dependent

signaling to PARP-1 was determined. PARP-1 activity was estimated radiochemically using egzogenous substrate

adenine[14C]NAD. The results showed that the non hydrolysable agonist of mChR, carbachol (1 mM) together with

GTP(γ)S (100 µM) stimulated PARP-1 activity in the hippocampus by about 100%. TMB-8, inhibitor of IP3 receptor

decreased PARP-1 activation evoked by carbachol/GTP(γ)S. Stimulation of mChR did not lead to free radicals generation

but activate PARP-1 through IP3/Ca2+ regulated processes. This cholinergic receptor dependent PARP-1 activation was

abolished by Aβ and NAC peptide. These toxic peptides themselves significantly stimulated PARP-1 activity by free

radicals mediated DNA damage. These data indicated that Aβ and NAC peptide affected mChR-dependent signal

transduction to PARP-1 probably through free radicals evoked inhibition of IP3 formation by phospholipase C. 
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Introduction

Our previous study presented that activation of the

muscarinic cholinergic receptor (mChR) by non

hydrolysable analog of acetylcholine, carbachol and

activator of G protein, GTP(γ)S significantly enhanced

inositol-1,4,5-triphosphate (IP3) and diacylglycerol

(DAG) formation and that this signaling events are

significantly altered by amyloid beta peptide (Aβ) [27].

In this study, the mChR evoked signals were

investigated on the level of DNA-bound enzyme

poly(ADP-ribose) polymerase (PARP-1, EC 2.4.2.30). The

recent data suggested that PARP-1 is the new nuclear

target for signal transduction processes evoked by

receptor(s) stimulation or membrane depolarization

[12,21,23]. Activated PARP-1 cleaves NAD into
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nicotinamide and forms long and branched polymers
of ADP-ribose on over forty nuclear proteins and 
PARP-1 itself. Poly (ADP-ribosyl) ation has been
implicated in the regulation of a diverse array of
cellular processes ranging from DNA repair,
chromatin organization, transcription, to replication
[2,7,9,15,21,25]. However, oxidative stress-induced
DNA strand breaks that stimulates PARP-1 lead to
βNAD+ and ATP depletion and to necrotic or apoptotic
processes [10,13,26]. The pathophysiological
significance of PARP-1 over-activation is suggested
in brain ischemia, diabetes, inflammation and
cancer [4,11,21]. Increased expression of this enzyme
and accumulation of poly(ADP-ribose) was observed
in Alzheimer's and Parkinson's brain [14,17,19]. Our
resent data indicated the involvement of mChR 
in the regulation of PARP-1 activity through IP3

receptor pathway [23]. In the present study, we
investigated the effect of Alzheimer's disease (AD)
related Aβ and NAC peptide on mChR-dependent
signal transduction to PARP-1. 

Material and methods

AAnniimmaallss

Male Wistar rats, 4-month-old (250-300 g), were
supplied from the Animal Breeding House of the
Medical Research Centre (Warsaw). The Institutional
Ethics Committee accepted the research project. 

MMaatteerriiaallss

Adenine[C14]NAD (sp. activity: 252 mCi/mmol), was
obtained from Amersham, Buckinghamshire, UK, Aβ
25-35, carbachol, GTPγS, and the all other reagents
were from Sigma Chemical Co. (St. Louis, MO, U.S.A.). 

PPrreeppaarraattiioonn  ooff  AAββ aanndd  NNAACC  ppeeppttiiddeess

Aβ 25-35 was dissolved in bidistilled deionized
(BDD) water at 2.5 mM concentration and incubated
at room temperature to obtain the aggregated form

as described previously [20]. Aβ was used at 25 µM

final concentration. NAC peptide was stored

lyophilized, and 100 µM stock solution was prepared

in BDD water and then used at final 10 µM

concentration. To obtain the aggregated form NAC

was incubated for 3 days at 37°C. 

PPrreeppaarraattiioonn  ooff  bbrraaiinn  sslliicceess  

Animals were killed by decapitation, the brain
was quickly removed, hippocampi were dissected
and cross-chopped into slices (350x350 µm) using
a McIlwain tissue chopper. The slices were placed in
ice-cold Krebs buffer (in mM: NaCl 124, KCl 5, MgSO4

1.2, KH2PO4 1.2, NaHCO3 26 and glucose 10)
equilibrated with 5% CO2 in 95% O2 to maintain
a pH of 7.4 and pre-incubated for 30 min at 37°C in
Krebs buffer. Then, CaCl2 was added to final 2 mM
concentration and incubation was prolonged for 30
min at 37°C in the presence or absence of the
following compounds: Aβ 25-35 (25 µM), NAC (10
µM), carbachol (1 mM) together with GTP(γ)S (100
µM), TMB-8 (10 µM). After incubation, the slices
were homogenized in glass-glass homogenizer and
used for determination of the PARP-1 activity. 

DDeetteerrmmiinnaattiioonn  ooff  tthhee  PPAARRPP--11  aaccttiivviittyy  

The PARP-1 activity was assayed as described

previously [22]. The total reaction mixture in the final

volume of 100 µl contained 400µM [adenine-14C]NAD

as a substrate (2x105 d.p.m., sp. activity: 252

mCi/mmol), 100 mM Tris-HCl buffer pH 8.0, 10 mM

MgCl2, 1mM dithiothreitol (DTT) and 200 µg of

protein. The reaction was carried out for 1 min at

37°C and stopped with 800 µl of ice-cold 25%

trichloroacetic acid (TCA). The precipitate was

collected on Whatman GF/B filters, washed five

times with ice-cold 5% TCA and processed for

determination of radioactivity in Bray's scintillation

fluid using scintilator counter Wallac 1409 LKB. 
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PPAARRPP--11  aaccttiivviittyy  [[ppmmooll  xx  mmgg  ooff  pprrootteeiinn––11 xx  mmiinn––11]]

ccoonnttrrooll ccaarrbbaacchhooll  ++  GGTTPP((γγ))SS ccaarrbbaacchhooll  ++  GGTTPP((γγ))SS  ++  TTMMBB--88

18.06±4.32 32.76±5.44 (188) (**) 27.04±5.83 (81) (#)

TTaabbllee  II.. Inhibition of IP3 receptor decreases PARP-1 activation evoked by mChR stimulation

The data are mean ±SEM from 3 experiments carried out in triplicate. Statistical analysis of the results was carried out using ANOVA followed by

Newman-Keuls post-hoc test. **p<0.01 compared to slices incubated without treatment (in parenthesis percent of control), #p<0.05 compared to

slices incubated with carbachol and GTP(γ)S (in parenthesis percent of carbachol/GTP(γ)S).
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Aβ and NAC affect mChR-mediated PARP-1

Results 

In the present study, we examined the role of
mChR on PARP-1 activation in the brain cortex and
hippocampus. Moreover, the effect of both AD
related peptide Aβ and NAC on this receptor
mediated signaling to PARP-1 was evaluated. The
data showed that carbachol at 1mM concentration
together with GTP(γ)S at 100 µM significantly
enhanced the PARP-1 activity by about 100% in the
hippocampus with no effect on this enzyme in the
brain cortex (Fig. 1). Inhibition of IP3 receptor through
TMB-8 (10 µM) decreased PARP-1 activation evoked
by carbachol/GTP(γ)S in the hippocampus (Table I).
MChR stimulation by carbachol/GTP(γ)S had no effect
on free radicals generation and macromolecules
oxidation (data not shown). In addition, this receptor
stimulation had no effect on the PARP-1 activity in the
presence of Aβ and NAC peptide (Fig. 2). However,
both peptides, Aβ and NAC significantly stimulated
this enzyme by 88% and 23%, respectively by free
radicals evoked DNA strand breaks (Fig. 2). 

Discussion

The major finding of this study is that AD related
peptide Aβ and NAC disturbed phosphoinositide
signaling to PARP-1 in the hippocampus. These and
our recent results presented PARP-1 as a nuclear
target for mChR pathway [23] are in agreement with
the previous data of Homburg et al [12]. They showed
that depolarisation of neurons activated PARP via 
IP3-induced Ca2+ signaling. In addition, it was shown
that N-methyl-D-aspartate (NMDA) receptors
stimulation could mediate PARP-1 activation [18,22].
Moreover, the present data indicated that Aβ and NAC
peptide enhanced basal PARP-1 activity. These results
supported our earlier data that both peptides induced
reactive oxygen species (ROS) generation and DNA
degradation [1]. It is well documented that PARP-1 is
the earliest and the most sensitive indicator of DNA
strand breaks evoked by oxidative stress [8,28]. Over-
activation of PARP-1 leads to cellular βNAD+ depletion,
apoptotic inducing factor (AIF) release and cell death
[13,26]. Aβ together with NAC peptide is a major
component of senile plaques in AD and through ROS
generation could participate in neuronal cell death
[3,5,6,16,24]. Our previous results showed that
mChR-dependent signal transduction in the rat brain
is damaged by Aβ peptide that significantly inhibited
phosphatidylinositol-4,5-bisphosphate phospholipase
C (PIP2-PLC) activity through ROS formation and
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FFiigg..  11..  MChR stimulation on PARP-1 activity in

the rat brain cortex and hippocampus. 

The PARP-1 activity was determined as described in
Material and Methods, (–) slices incubated without
tratment, (+) – slices incubated with 1 mM carbachol
and 100 µM GTP(γ)S. The data are mean ±SEM from
3 experiments carried out in triplicate. Control value of
the PARP-1 activity in the brain cortex and hippocampus
evaluated 15.52±3.94 and 18.06±4.32 pmol x mg of
protein–1 x min–1, respectively. Statistical analysis of the
results was carried out using ANOVA followed by
Newman-Keuls post-hoc test, *p<0.05 compared to
slices incubated without carbachol and GTP(γ)S
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FFiigg..  22.. Efecct of Aβ and NAC peptide on mChR

signaling to PARP-1 in the hippocampus. 

The data are mean ±SEM from 3 experiments carried
out in triplicate, presented as percentage of
appropriate control. Statistical analysis of the results
was carried out using ANOVA followed by
Newman-Keuls post-hoc test. *p<0.05 compared to
slices incubated without treatment
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membrane lipids peroxidation [20,27]. The present
data indicated that Aβ and NAC peptide decreased
PARP-1 activation evoked by mChR stimulation. We
therefore consider that both peptides through the free
radicals mechanism inhibited PIP2-PLC activity and IP3

liberation and disturbed signal transduction from
mChR to PARP-1. 
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