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A b s t r a c t 

Through the use of RNA sequencing, microRNA (miRNA) and messenger RNA (mRNA) microfluidic array analysis, 
LED Northern, Western and ELISA analysis and multiple bioinformatics algorithms we have discovered a novel route 
for pathogenic communication between the human gastrointestinal (GI)-tract microbiome and the brain. The evi-
dence suggests that this pathogenic gut-brain circuit involves: (i) lipopolysaccharide (LPS) from the GI-tract resident 
enterotoxigenic Gram-negative bacteria Bacteroides fragilis (BF-LPS); (ii) LPS transit across the GI-tract barrier into 
the systemic circulation; (iii) transport of a highly pro-inflammatory systemic BF-LPS across the blood-brain barrier 
(BBB) into the brain-parenchyma and neuronal-cytoplasm; (iv) activation and signaling via the pro-inflammatory 
NF-kB (p50/p65) transcription-factor complex; (v) NF-kB-coupling and significant up-regulation of the induci- 
ble pro-inflammatory microRNA-146a (miRNA-146a) and microRNA-155 (miRNA-155); each containing multiple 
NF-kB DNA-binding and activation sites in their immediate promoters; and (vi) subsequent down-regulation of  
miRNA-146a-miRNA-155 regulated mRNA targets such as that encoding complement factor H (CFH), a soluble com-
plement control glycoprotein and key repressor of the innate-immune response. Down-regulated CFH expression acti-
vates the complement-system, the major non-cellular component of the innate-immune system while propagating 
neuro-inflammation. Other GI-tract microbes and their highly complex pro-inflammatory exudates may contribute to 
this pathogenic GI-tract-brain pathway. We speculate that it may be significant that the first Gram-negative anaero-
bic bacterial species intensively studied as a potential contributor to the onset of Alzheimer’s disease (AD), that being 
the bacillus Bacteroides fragilis appears to utilize damaged or leaky physiological barriers and an activated NF-kB 
(p50-p65) – pro-inflammatory miRNA-146a-miRNA-155 signaling circuit to convey microbiome-derived pathogenic 
signals into the brain.
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Overview: human GI-tract microbiome 
and Bacteroides fragilis

The gastrointestinal (GI) tract of Homo sapiens 
contains a complex microbiome consisting primarily 
of bacteria, with archaea, fungi, microbial eukary-
otes, protozoa, viruses, and other microorganisms 
making up the balance [3-5,7,8,16,19,25,26,89,90]. 
Together with human host cells this microbiome 
comprises the entire meta-organism whose host 
interactions and symbiotic associations are critical 
to human health and disease [4,16,18,35,72,88-90]. 
These diseases include lethal, progressive, age-relat-
ed, inflammatory neurodegenerative disorders of the 
human central nervous system (CNS) such as Alzhei- 
mer’s disease (AD) [4,5,9,35,58,60,72,76,82]. Of the 
52 currently recognized bacterial divisions, humans 
have co-evolved with just 2 dominant phyla: Bacte-
roidetes, representing ~20-30% of all human GI-tract 
resident bacteria, and Firmicutes (about 70-80%), 
with Actinobacteria (~3%), Proteobacteria (~1%) and 
Verrucomicrobia (~0.1%) making up the remainder 
[4,5,7,61,78]. These four major bacterial phyla rep-
resent the ‘bacterial-core’ of the human GI-tract 
microbiome [4,7,8,78,82]. The vast majority of all 
GI-tract microbiota consists of Gram-negative anaer-
obic bacteria, and Bacteroidetes species represent 
the most abundant Gram-negative anaerobes, out-
numbering Escherichia coli in abundance by about  
100 to 1 [3-8,14,15,61-64]. Certain strains of Bacteroi-
detes species such as Bacteroides fragilis (B. fragi-
lis), as a normal commensal microbe of the human 
GI-tract, are thought to be ordinarily beneficial to 
human health due to their multiple capabilities: (i) to 
biosynthesize useful metabolic co-factors and prod-
ucts such as polysaccharides, transport proteins, vol-
atile fatty acids and other nutrients [9,14,47,62,74]; 
(ii) to cleave dietary fiber into digestible short-chain 
fatty acids (SCFAs) that include acetate, propio-
nate, and butyrate [9,38,63,74]; (iii) to function in 
the maintenance, development and homeostasis 
of the host immune system [14,47,62,74,79]; (iv) to 
support immunomodulation and protection against 
pathogens including potentially pathogenic GI tract 
bacteria [9,14,29,63,79]; and (v) to support glucose 
homeostasis [8,9,13,63,69,72]. Conversely, when 
enterotoxigenic strains of B. fragilis or their array 
of secretory neurotoxins leak through normally 
protective biophysiological-mucosal barriers they 
can cause substantial inflammatory pathology sys-

temically that can contribute to significant mortal-
ity and morbidity [15,29,57,63,72,90]. Dietary intake 
of fiber may have a determinant role in regulating 
the composition, organization and stoichiometry of 
the GI-tract microbiome; for example Bacteroidetes 
species proliferate in porcine models fed high-fat 
diets that are deprived of sufficient dietary fiber 
[13,22,32,57,69,83,84]. 

The secreted LPS derived from the outer mem-
brane of B. fragilis (BF-LPS) is a  remarkably neuro- 
toxic and pro-inflammatory lipid-sugar lipoglycan 
consisting of a hydrophobic domain known as a lipid A 
‘endotoxin’, a  nonrepeating “core” oligosaccharide, 
and a  distal polysaccharide ‘O-antigen’ [12,77]. 
Interestingly, of several different AD-associated pro- 
inflammatory mediators – including the pro-inflam-
matory cytokines interleukin 1β (IL-1β) and tumor 
necrosis factor α (TNF-α), the neurotoxic Aβ40 and 
Aβ42 peptides, the combination of Aβ42 + IL-1β 
together, the LPS isolated from E. coli (EC-LPS) or  
B. fragilis (BF-LPS) – that were tested for their ability 
to induce the pro-inflammatory transcription factor 
NF-kB (p50/p65 complex) in human neuronal-glial 
(HNG) cells in primary co-culture, BF-LPS was by far 
the most potent. For example, 25 nM doses of BF-LPS 
administered to HNG cells elicited an ~11-fold more 
of a  pro-inflammatory response than the same 
quantity of Aβ42 peptide alone and a  remarkable 
~27-fold more of an inflammatory response than the 
pro-inflammatory cytokine TNF-α alone [12,46,47]. 
In addition to lipooligosaccharide (LOS) and lipopoly-
saccharide (LPS) generation, B. fragilis endotoxins are 
a leading cause of anaerobic bacteremia and sepsis 
driving systemic inflammatory distress through their 
generation of the highly pro-inflammatory ~20 kDa 
heat-labile zinc-dependent metalloprotease B. fra-
gilis toxin (BFT) fragilysin [10,14]. Exposure to BFT 
results in the infiltration of a  variety of inflamma-
tory cells and also in the destruction of the mucosal 
epithelial cell layer [10,62,63]. The ability of B. fragi-
lis strains to secrete BFT classifies these microbes 
as: (i) those that do not secrete BFT as the nontoxi-
genic form of B. fragilis (NTBF); and (ii) those that 
do secrete BFT are classified as the enterotoxigenic 
form of B. fragilis (ETBF) [14,62]. Interestingly, the 
ETBF form can (i) disrupt epithelial cells of GI tract 
barriers via cleavage of the synaptic adhesion zonu-
la adherens protein E-cadherin [14,24,39,62,63,65]; 
and (ii) induce clinical pathology, including intestinal 
diarrhea, celiac disease and systemic inflammation 
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[10,25-28,46,47,54,62,65,80]. Indeed, under patho-
physiological conditions within the aging AD brain it 
might be expected that a pro-inflammatory cocktail 
of BF-LPS, BFT and other B. fragilis-derived exotox-
ins, amyloids and small non-coding RNAs (sncRNAs) 
would assault normal brain homeostasis together to 
elicit an even greater pro-inflammatory response in 
driving the neurodegenerative disease process (Fig. 1). 
It should also be kept in mind that other GI-tract 
microbiome-resident microbes including fungus, 
protozoa, viruses, and other commensal microorgan-
isms may also contribute highly neurotoxic exudates 
that can be strongly detrimental to the homeostasis 
of aging CNS neurons.

Systemic inflammation and the 
propagation of GI-tract microbiome-
derived signals

GI-tract microbiome-derived neurotoxin entry 
into the systemic circulation may be a  precursor 
event to the onset of inflammatory neurodegener-
ation in the CNS and establishing pathogenic path-
ways of communication between the systemic and 
central innate-immune systems [23,29,31,66]. It is 
currently not well understood if GI-tract barrier-dis-
rupting proteolytic endotoxins such as BFT are able 
to propagate pathogenic actions via the systemic 
circulation to further disrupt the blood-brain barrier 
and transfer LPS, BFT, and other endotoxins into the 
cerebrovascular circulation to the brain parenchy-
ma, neural cells and synaptic circuitry of the CNS. 
However, it has recently been reported that BF-LPS, 
BFT and amyloid peptides progressively alter neural 
cytoarchitecture, synaptic adhesion, affecting both 
the function and integrity of synapses – a series of 
processes that play critical roles in the disruption of 
functional inter-neuronal signaling throughout neu-
ronal networks in AD [33,39,42,48,57,65,76]. 

Up-regulated microRNAs (miRNAs) and 
down-regulation of essential signaling 
components in Alzheimer’s disease  
by GI-tract microbiome-derived LPS

The structure, function and evolution of miRNAs 
including their expanding list of critical regulatory 
roles in CNS development and age-related human 
neurodegenerative diseases such as AD have been 
extensively reviewed and will not be dealt with further 
here [1,2,34,41,45,49,51,70,83,88]. Because miRNAs 

are relatively unstable in brain and retinal tissues 
with half-lives on the order of ~1-3 hrs, only signifi-
cantly up-regulated miRNAs have been studied in 
short post-mortem interval (PMI) tissues of PMIs of 
2-3 hrs or less; down-regulated miRNAs may simply 
be a consequence of the highly oxidative and pro-in-
flammatory degradative environment of actively 
degenerating neural tissues [11,59,67]. It has become 
abundantly clear that the major mode of action of 
miRNAs is to function as negative regulators of mes-
senger RNA (mRNA)-mediated gene expression by 
binding to complementary ribonucleotide sequenc-
es in the 3’-untranslated region (3’-UTR) of target 
mRNAs, thus causing the repression of translation 
and/or degradation of that target mRNA [21,59,73]. 
Briefly, a  small family of NF-kB (p50/p65 complex) 
induced pro-inflammatory microRNAs (miRNAs), in- 
cluding miRNA-9, miRNA-34a, miRNA-125b, miRNA- 
146a, and miRNA-155, ultimately bind with the 
3’-UTR of several target messenger RNAs (mRNAs) 
and thereby decrease their expression. Down-regu-
lated mRNAs include those encoding the SH3-pro-
line-rich multi-domain-scaffolding protein of the 
postsynaptic density (SHANK3), the triggering recep-
tor expressed in myeloid/microglial cells (TREM2) 
and complement factor-H (CFH); similar deficiencies 
in these 3 proteins are also observed in sporadic AD 
brain [20,27,28,36,89,90]. The critical importance 
of a  down-regulated CFH mRNA and protein, and 
hence the observed deficits in CFH expression and 
abundance in AD in this scheme due to up-regulat-
ed pro-inflammatory miRNA-146a and miRNA-155 is 
particularly significant. CFH down-regulation is fur-
ther discussed below due to its critical role in the  
regulation of the innate-immune response and the 
onset and propagation of neuro-degeneration and 
inflammatory signaling [16,36,43,50,52,53,55] (Fig. 1). 

Complement factor H as an important 
LPS-NF-kB-miRNA-146a-miRNA-155  
end target

Complement factor H (CFH; GC01P196621), encod-
ed from the regulator of complement activation gene 
cluster at human chromosome 1q31.3, is a large, struc-
turally versatile and critical 155 kDa soluble glycopro-
tein moderately expressed in the human neocortex 
and retina, and highly expressed in the gall bladder 
and the liver where the mature plasma form of CFH 
passes into the systemic circulation [36,50,52,53]; 
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Fig. 1. Gram-negative anaerobes such as the abundant human gastrointestinal (GI)-tract resident Bacteroides 
fragilis (left panel; scanning electron microscopy (SEM) photograph of B. fragilis shown (9100×); original micro-
photograph courtesy of Rosa Rubicondior (http://rosarubicondior.blogspot.com/2014/11/evolving-coopera-
tion-but-for-who-or-what.html; last accessed 4 July 2019), when stressed, release a broad spectrum of highly 
pro-inflammatory and potentially pathogenic molecules into the surrounding medium; these molecules com-
prise five major classes of secreted neurotoxins that include lipooligosaccharide (LOS) and lipopolysaccharide 
(LPS), exotoxins (such as fragilysin), endotoxins, bacterial amyloids, and small non-coding RNAs (sncRNAs) 
[7,12-14,24-27,87]. Normally, a highly dynamic GI-tract barrier keeps bacteria and their neurotoxic exudates 
compartmentalized within the GI-tract; however, with aging and disease these barriers become ‘leaky’ and the 
same neurotoxins can easily transit GI-tract barriers to enter the systemic circulation. Gram-negative bacteri-
al-derived LPS or other bacterial-derived neurotoxins in the systemic circulation give rise to a ‘systemic inflam-
mation’ which may be a ‘precursor event’ to the development and/or establishment of Alzheimer’s disease 
(AD) and other forms of progressive inflammatory neurodegeneration [16,17,23,26,27,31,37,38,56,57,71,87]. 
The extremely pro-inflammatory LPS of B. fragilis (BF-LPS) is exceptionally neurotoxic toward human CNS 
neurons in primary culture [40,47]. LPS in the systemic circulation can cross the blood-brain barrier (BBB) to 
access neural-susceptible brain compartments; there is also recent and compelling evidence that in the 5xFAD 
transgenic murine model of AD, LPS alone induces the opening of aging physiological barriers including the 
BBB [6,54]. Multiple laboratories have independently reported perivascular LPS localization in brain arteries 
and LPS accumulation within the brain parenchyma, within brain cell cytoplasm and surrounding neuronal cell 
nuclei with specific effects on neuron-specific gene expression [12,13,15,26,27,71,80,87-90]. BF-LPS rapidly 
and efficiently induces the pro-inflammatory NF-kB (p50/p65) complex in cultured human brain cells followed 
by increases in the abundance of the inducible pro-inflammatory miRNA-146a and miRNA-155 (both of these 
miRNAs containing active NF-kB-DNA binding sites in their immediate promoter [25-27,40,43,80,87-90]. 
One energetically favorable miRNA-146a and/or miRNA-155 mRNA target, both confirmed by bioinformatics 
and miRNA-mRNA-3’-UTR binding luciferase-reporter assay, is the 3’-untranslated region (3’-UTR) of comple-
ment factor H (CFH) mRNA resulting in, respectively, the down-regulation of CFH expression [26,27,48,87]. 
A down-regulated CFH is associated with the disruption of innate-immune signaling that supports inflamma-
tory neurodegeneration and amyloidogenesis [17,34,36,45,55,75,89-91]. Although CFH is easily detected in 
the brain parenchyma and neuronal cytoplasm it is also highly abundant in the blood serum of the human 
systemic circulation, as may be some other pathogenic blood-cell-based biomarkers that may include specific 
kinase mutations and other polymorphisms [17,45,55,68,91; see also https://www.sigmaaldrich.com/cata-
log/product/sigma/c5813?lang=en&region=US; ENSG000 00000971-CFH/ tissue; last accessed 4 July 2019]. 
Like for other biomarkers, CFH communication and/or exchange between the brain parenchyma and systemic 
circulation (green dashed arrow) is not well understood. Other up-regulated brain-enriched microRNAs and 
their down-regulated mRNA targets may also be involved in multiple pathogenic signaling mechanisms. 
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https://www.proteinatlas.org/ENSG00000000971-
CFH/tissue; https://www.genecards.org/cgi-bin/card 
disp. pl? gene=CFH; last accessed 29 March 2019). 
Normal human plasma concentrations of CFH range 
between ~200 and 300 ug/ml, the highest of any 
plasma complement protein, and as such represents 
the major human complement regulator in human 
blood, brain and retina [17,55; unpublished]. CFH is 
composed of ~20 tandem ~60 amino-acid ‘comple-
ment control protein’ modules each connected by 3-8 
amino acid linkers whose principal function is to reg-
ulate the alternative pathway of complement system 
activation, a  central component of the innate-im-
mune system’s natural defense against pathogens 
and microbial infection [27,28,36,52,88-90]. As the 
major immune regulator of the innate-immune sys-
tem, CFH recognizes pathogen- and damage-asso-
ciated molecular patterns (DAMPs) and initiates an 
immune response in coordination with innate and 
adaptive immunity [36,52,53,88-90]. When activated, 
the complement system unleashes powerful cytotox-
ic and pro-inflammatory mechanisms, and thus its 
stringent control is critical to allow the restoration of 
immune-homeostasis and the prevention of damage 
to host-tissues. Significant levels of CFH expression 
are maintained in the blood, brain and retinal tissues 
during development and aging, suggesting that this 
glycoprotein plays a role in protecting these compart-
ments, cells and tissues from indiscriminate comple-
ment activation and innate-immune and/or inflam-
matory damage [16,45,55,88-90]. Brain CFH, retinal 
CFH and plasma CFH levels have been found to be 
significantly decreased in mild cognitive impairment 
(MCI), in late onset AD (LOAD), in age-related macu-
lar degeneration (AMD) patients and in autoimmune 
disease when compared to age-matched controls 
[17,27-29,45,55,89,90]. The LPS-induced, NF-kB-stim-
ulated pro-inflammatory microRNAs miRNA-146a 
and miRNA-155 regulate both brain and retinal CFH 
expression via very strong overlapping complemen-
tary RNA binding sites in the CFH 3’ untranslated 
region (3’-UTR); interestingly the entire 232 ribonu-
cleotide sequence of the human CFH mRNA 3’-UTR 
appears to contain multiple miRNA recognition fea-
tures and highly complementary miRNA binding 
sites that may be alternately used in CFH regulation 
in the brain, retina and other neural or extra-neu-
ral tissues [17,27,28,89,90]. Together miRNA-146a 
and miRNA-155 recognize an overlapping miRNA 
regulatory control (MiRC) region in the CFH 3’-UTR  

(5’-TTTAGTATTAA-3’) to which either of these miRNAs 
may interact [17,45]. Progressive, pathogenic increas-
es in specific miRNA binding to the entire 232 nucle-
otide CFH 3’-UTR appears to be a major regulator of 
CFH expression down-regulation, and the inflamma-
tory pathology that characterizes both AD and AMD. 
Besides miRNA-146a and miRNA-155, the involve-
ment of other up-regulated miRNAs in controlling 
CFH expression is not known and cannot be exclud-
ed at this time [17,45,55]. Epigenetic-based gene 
therapies, including miRNA-based therapeutic strat-
egies that target miRNA-146a and miRNA-155 using 
anti-miRNA-146a and/or anti-miRNA-155 strategies, 
and hence the regulation of CFH expression, may be 
greatly beneficial and advance the protective effects 
of CFH at inflammatory sites in CNS disease. 

Importantly, CFH has several structurally related 
proteins also encoded at the regulator of comple-
ment activation gene cluster at human chromosome 
1q31.3 that lack relevant complement regulatory 
activity – these are known as CFH-related (CFHR) 
proteins [36,53,55]. The balance between the actions 
of CFH and the CFHR proteins: (i) determines the 
degree of complement activation and the innate-im-
mune response; and (ii) regulates the neurophysi-
ological roles of CFH and CFHR in CNS health and 
disease [36,75]. The functional contributions of CFH 
and CFHR-mediated signaling to the innate-immune 
response in inflammatory neurodegeneration are 
currently not completely understood [36,55,75]. 

Concluding comments

Recent experimental evidence continues to sup-
port the idea that the GI-tract microbiome is capable 
of providing a  rich source of potentially neurotoxic 
mediators capable of crossing the age-compromised 
or diseased GI-tract endothelial cell barriers into the 
systemic circulation and then transit the BBB into 
the brain parenchyma. Age-related disease or dys-
function of these physiological barriers, poor diet and 
nutrition in the elderly, or the membrane- and adhe-
sion protein-disruptive properties of the neurotoxins 
themselves may contribute to leakage of these patho-
genic species into the systemic circulation and/or the 
establishment in the GI-tract microbiome of bacteri-
al dysbiosis that further supports the generation of 
these neurotoxic components. GI-tract-derived toxins 
in the systemic circulation such as BF-LPS capable of 
crossing the BBB have strong potential to trigger the 
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NF-kB (p50-p65)-miRNA-146a-miRNA-155 signaling 
system to convey GI-tract microbiome-derived patho-
genic signals into the brain. These have strong poten-
tial to down-regulate a select number critical mRNAs 
and their expression, such as for example, brain CFH, 
to induce disruption of the innate-immune response 
and inflammatory neurodegeneration (Fig. 1). Other 
up-regulated miRNAs appear to trigger neurologi-
cal disease via the targeting and down-regulation of 
brain-enriched mRNAs, and hence gene expression, 
involved in the normal maintenance of the cytoskele-
ton and cytoarchitecture, both pre- and post-synaptic 
organization, neurotrophic support, amyloidogenesis 
and the clearance of AD-related lesions such as amy-
loid peptides [28,34,59,67,83,88]. We speculate that 
it may be significant that the first anaerobic bacterial 
species intensively studied as a potential contributor to 
the onset of AD, that being the Gram negative bacillus  
B. fragilis, appears to utilize damaged or leaky physio- 
logical barriers and an activated NF-kB (p50-p65)-pro- 
inflammatory miRNA-146a-miRNA-155 signaling sys-
tem to convey microbiome-derived pathogenic signals 
into the brain [28,34,57,63,85,86,89,90]. Interestingly, 
the human neurotrophic virus herpes simplex 1 (HSV-1) 
also activates an NF-kB (p50-p65)-pro-inflammatory 
miRNA-146a signaling system during the initial infec-
tion of human brain neurons, but the nature and signif-
icance of this activation pathway, and whether or not 
this represents an immune evasion strategy by HSV-1 
or the host cell, is currently not well understood 
[24,30,44]. 

Lastly, the development of strategies for regulat-
ing and maintaining a healthy GI-tract microbiome 
represents a valid, attainable and testable hypothe-
sis for lowering an individual risk and the prevalence 
of progressive inflammatory neurodegeneration. 
Indeed, the modification of the GI-tract microbiome 
composition and complexity via diet-based therapies, 
prebiotics or probiotics may support: (i) the establish-
ment and maintenance of host-friendly, health-pro-
moting and disease-reducing microbial composition; 
and (ii) provide new preventive and/or therapeutic 
options for a more effective clinical management of 
AD and related forms of age-related inflammatory 
neurodegeneration [4,5,23,38,40,61,81,89,90]. 
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