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A b s t r a c t

Both, the neurotoxic and neuroprotective effects of zinc have been well established, but the exact mechanism of its
dual abilities still remains unclear. It has been shown that zinc deficiency leads to progressive neuronal injury. Therefore
a safe zinc concentration levels seem to be necessary in neuronal protection from different noxious factors. 
This study was undertaken to determine the effect of zinc chelating agent – TPEN on neuronal morphological
changes in organotypic hippocampal culture and its effect on post-anoxic changes in this model. The study
evidenced that exposition to 15 μM of TPEN induced various stages of apoptotic changes in hippocampal pyramidal
neurons and enhanced the anoxia-induced neuronal apoptosis in this model. These results confirmed the hypothesis
that manipulations of intracellular pool of zinc by zinc-chelating agents may be a cause of both induction and
prevention of apoptotic cell death in various pathological conditions.
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Introduction

Zinc is one of the well known neuromodulatory
agents [39,40,44]. After exposition to different injuring
factors zinc accumulates especially in degenerating
neurones of CA1 hippocampal subfield. It has been
documented that transient ischemia/hypoxia may
induce the increase of extracellular zinc concentration
accompanied by over-expression of zinc transporter
ZnT-1 gene [19,43]. Zinc may play a casual role in
various forms of apoptosis and its accumulation has
been demonstrated in central neurons undergoing
apoptosis during development [21]. Zinc chelating
agents are thought to be responsible for decrease of
neurotoxic properties of zinc [4,8]. 

Our previous ultrastructural studies showed the
neuroprotective effect of zinc on apoptotic cell death
in a model of anoxia in vitro [28].

The aim of this study was the evaluation of the
effect of zinc-chelator - TPEN on the course of
morphological changes in the model of organotypic
hippocampal culture exposed to anoxia to answer
the question if intracellular zinc deficiency could
potentiate postanoxic neuronal injuries. 

Material and methods

The experiments were performed on organotypic
hippocampal cultures prepared from 2- to 3-day-old
Wistar rats. In sterile conditions the hippocampi were
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dissected out from both cerebral hemispheres, placed
in dishes containing Eagle Minimal Essential Medium
(MEM) and cut coronally into thin slices. The explants
were placed on collagen-coated cover glasses with 2
drops of nutrient medium and sealed into the
Maximow chambers. The cultures were kept at 36.6°C
in a medium consisting of 20% inactivated foetal
bovine serum and 80% of MEM, supplemented with
glucose to a final concentration of 600 mg%, with
antibiotics. The medium was renewed twice a week.
On the 14-18 day in vitro the well differentiated and
sensitive to anoxic injury cultures were divided into
the following experimental groups: 1. cultures exposed
to TPEN (N,N,N’N’-tetrakis-(2-pyridylmethyl) ethylene-
diamine) in concentration of 15 μM; 2. cultures
exposed to 20-minutes anoxia in a pure nitrogen
atmosphere in flasks adapted for permanent gas flow;

FFiigg..  11.. Hippocampal culture, 24 hours after exposition to 15 μM TPEN. Apoptotic bodies containing fragments
of condensed chromatin and cytoorganelles. x 18 750
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FFiigg..  22.. Hippocampal culture, 5 days after exposition to
15 μM TPEN. Pyramidal neuron with characteristic
apoptotic form of condensed chromatin in the close
proximity to nuclear membrane, so-called “half-
-moon”. x 18 750
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3. cultures exposed to 20-minutes anoxia, pretreated
with TPEN (15μM); 4. control cultures grown in
standard conditions. After 30 minutes, 2 and 24 hours,
3 and 5 days the cultures from experimental and
control groups were processed for electron microscopy.
They were rinsed in cacodylate buffer, pH 7.2, fixed in
a mixture containing 0.8% formaldehyde and 2.5%
glutaraldehyde for 1 hour, postfixed in 1% osmium
tetroxide, dehydrated in alcohols in graded concentra-
tions, and embedded in Epon 812. Ultrathin sections
were counterstained with uranyl acetate and lead
citrate and examined under a JEOL XB 1500 electron
microscope. 

Results

TThhee  eeffffeecctt  ooff  TTPPEENN  oonn  uullttrraassttrruuccttuurraall
ffeeaattuurreess  iinn  oorrggaannoottyyppiicc  hhiippppooccaammppaall
ccuullttuurreess  

Exposure to TPEN in 15 μM concentration led to
progressive ultrastructural changes in the structure
of both nucleus and cytoorganelles of piramidal

neurones. After 30 minutes and 2 hours of the experi-
ment a slight vacuolization of cytoplasm and swelling
of mitochondria were observed. Numerous neurones
showed extensive changes within the mitochondrial
matrix with loss of mitochondrial cristae. After 24
hours following the exposure, the pyramidal
neurones displayed dilatation of Golgi apparatus
channels and extensive vacuolization of cytoplasm,
whereas the nucleus maintained its normal appearan-
ce. Some massively damaged cells, presenting
morphological criteria of necrosis and/or apoptosis
were noticed. There were also neurones exhibiting
typical apoptotic features with condensed cytoplasm
containing numerous well preserved cytoorganelles.
Numerous apoptotic bodies were seen (Fig. 1). 

The most prominent apoptotic neuronal changes
were observed after 5 days following the exposure to
TPEN. A lot of pyramidal neurones showed the aggre-
gation of chromatin close to the nuclear membrane,
often in the form of so-called “half-moon” (Fig. 2).
Frequently, the condensed chromatin formed
numerous aggregations under the nuclear membrane

FFiigg..  33..  Hippocampal culture, 5 days after exposi-
tion to 15 μM TPEN. Neuronal cell with nucleus
containing aggregations of chromatin under
nuclear membrane. x 25 000

FFiigg..  44..  Hippocampal culture, 5 days after exposi-
tion to 15 μM TPEN. Neuronal cell with nucleus
containing aggregations of chromatin in the form
of “cups” characteristic of apoptosis. x 18 750
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(Fig. 3) or “cups”, typical of apoptosis (Fig. 4). Some
cells, displaying marked condensation of cytoplasm
and aggregation of nuclear chromatin, lacked the
nuclear membrane integrity (Fig. 5). A large number of
apoptotic bodies containing chromatin clumps and
fragments of cytoplasm with destructed cytoorganel-
les were frequently observed (Fig. 6). 

TThhee  eeffffeecctt  ooff  TTPPEENN  oonn  tthhee  ddeevveellooppmmeenntt
ooff  ppoosstt--aannooxxiicc  mmoorrpphhoollooggiiccaall  cchhaannggeess
iinn  oorrggaannoottyyppiicc  rraatt  hhiippppooccaammppaall  ccuullttuurree

Cultures exposed to 20-minutes anoxia but
pretreated with TPEN in concentration of 15 μM
showed a large number of cells with morphological
features of both necrosis and apoptosis. A set of cells
exhibited electron-dense cytoplasm with damaged
organelles and disrupted cell membranes. A large
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FFiigg..  55..  Hippocampal culture, 5 days after exposi-
tion to 15 μM TPEN. Nucleus containing conden-
sed chromatin and lack of the nuclear membrane
integrity. x 18.750

FFiigg..  66..  Hippocampal culture, 5 days after exposi-
tion to 15 μM TPEN. Apoptotic body containing
chromatin clumps and fragments of cytoplasm
with destructed cytoorganelles. x 18 750

FFiigg..  77..  Hippocampal culture, 24 hours after exposi-
tion to 15 μM TPEN and 20-minutes anoxia.
Neuronal cell containing nucleus with characteristic
apoptotic form of condensed chromatin. x 25 000
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number of cells revealed typical apoptotic changes,
especially characterisic condensation of nuclear
chromatin (Fig. 7, 8). The ongoing apoptotic process
was confirmed by the presence of numerous
apoptotic bodies (Fig. 9). Some cells exhibited the
ultrastructural features typical of both necrosis and
apoptosis i.e. destruction of cytoorganelles and
clumps of condensed nuclear chromatin, reflecting
so-called “apoptotic-necrotic” continuum (Fig. 10).
After 5 days of observation the hippocampal cultures
displayed advanced morphological changes of
neuronal cells including severe vacuolisation of
cytoplasm, destruction of cytoorganelles and massive
condensation of nuclear chromatin with only partial
preservation of the nuclear membrane (Fig. 11). 

Discussion  

Zinc is one of the trace elements playing an
important role in the maintenance of structural and
functional integrity of cells and tissues. Zinc in

micromolar concentrations is necessary to maintain
proper functioning of many enzymes, transcription
factors and structural proteins [39,44]. The central
nervous system, as well as other tissues, contains
significant amounts of zinc [11]. The increasing
evidence confirms the crucial role of zinc in many
physiological processes but on the other hand, zinc
seems to be a very important factor in the pathoge-
nesis of different neurodegenerative diseases [20,37].
Neuroprotective and neurotoxic effects of zinc have
been established in different experimental models
[10,20,34]. Zinc is thought to be an endogenous
modulator of synaptic activating transmitter –
glutamate (GLU) through NMDA, AMPA and metabo-
tropic glutamatergic receptors [7,13,18,31,47]. The
complex effect of Zn2+ on many metabolic processes
suggests that zinc may play a modulating role in
neurodegenerative processes [7,17,26,41,45,46,48,49].
Swelling of mitochondria is one of the most
prominent ultrastructural changes resulting from

FFiigg..  88..  Hippocampal culture, 24 hours after expo-
sition to 15 μM TPEN and 20-minutes anoxia.
Neuronal cell with electron-dense cytoplasm
containing condensed masses of chromatin and
more or less damaged cytoorganelles. x 30 000

FFiigg..  99..  Hippocampal culture, 24 hours after
exposition to 15 μM TPEN and 20-minutes
anoxia. Apoptotic bodies with fragments of
condensed chromatin and damaged cytoorga-
nelles. x 50 000
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postanoxic overaccumulation of zinc in postsynaptic
neurones [23]. It probably follows permeability
transition pore in the mitochondrial membrane [15].
Recent data shows that zinc ions from synaptic
vesicles, and also of intramitochondrial origin, play an
important role in pathogenesis of these changes
[35,36]. Some authors point out that cellular changes
resulting from the neurotoxic effect of zinc exhibit
both necrotic and apoptotic features [12,16]. 

The reduction of zinc pool by chelating agents in
physiological conditions might lead to substantial
disturbances in intracellular biochemical reactions.
Depletion of zinc intracellular concentration turned
out to be crucial in loss of cell defence against
injuring factors [32].

The present ultrastructural study demonstrated
the toxic effect of zinc-chelating agent - TPEN on the
pyramidal rat hippocampal neurones in vitro. The
pyramidal neurones showed characteristic sequence
of morphological changes typical of apoptosis,

especially after 5 days since exposition. Pyramidal
neurones exhibited morphological features of both
early apoptotic changes with a characteristic pattern
of chromatin clumping and late stages of apoptosis
with formation of typical apoptotic bodies. The toxic
effect of TPEN was enhanced by exposition to 20-
minutes anoxia. It is consistent with our previous
ultrastructural studies based on a model of anoxia in
vitro which had evidenced the protective effect of
ZnCl2 on development of late postanoxic changes
connected with apoptosis [28]. The neuroprotective
effect of zinc is probably connected with inhibition
of NMDA receptors. The regulatory role of zinc in the
process of apoptotic cell death was the subject of
different experimental models [2,3,22,23,28,33,51]. In
physiological conditions endogenous zinc plays an
inhibiting role of apoptosis [30,50], probably by
inhibition of the endonucleases activity responsible
for DNA degradation and by interactions with
transcription factors and kinases or by its antioxida-

FFiigg..  1100..  Hippocampal culture, 24 hours after
exposition to 15 μM TPEN and 20-minutes
anoxia. Massively damaged neuronal cell with
completely disrupted cytoorganelles and masses
of condensed chromatin. x 25 000

FFiigg..  1111..  Hippocampal culture, 5 days after exposi-
tion to 15 μM TPEN and 20-minutes anoxia. Frag-
ment of neuronal cell with marked vacuolisation
of cytoplasm, lipid drops and clumps of conden-
sed nuclear chromatin. x 25 000
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tive properties [25]. Some authors emphasise the
main inhibitive effect of zinc on caspase-3
[5,6,24,30,38]. On the other hand, zinc seems to
have a modulatory effect on the apoptotic process
by increasing the permeability of mitochondrial
megachannels and causing the cascade of caspase
reactions [15,42]. 

It has been previously documented that TPEN
causes removal of zinc from zinc-dependent trans-
cription factors. TPEN is thought to be a potentially
efficient agent which prevents neuronal death due
to a decrease of toxic concentrations of zinc [8,9].
However, the reduction of zinc pool by chelating
agents in physiological conditions may lead to
substantial disturbances in intracellular biochemical
reactions.

Extensive decrease of zinc concentration leads to
activation of apoptosis in different cells including
neurones [1,27,29]. The exact mechanism of this
effect remains unclear, but typical apoptotic changes
have been observed in neurones in different
experimental models, both in vivo [4,8] and in vitro
[1,5,14,33]. The present study supports the opinion
that the instability in intracellular zinc concentration
may result in abnormality in cell death control in
various pathological processes.
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