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Introduction 

Polycystic Ovary Syndrome (PCOS) is one of the most prevalent female
reproductive endocrinopathies, affecting 5 to 10% of women worldwide [1].
A relatively widespread disorder, PCOS has remained an important topic
of research. Along with endocrine and genetic factors, obesity is a key
complication related to PCOS. Of the women clinically diagnosed with this
syndrome, 50% are overweight or obese and between 50 and 60% reportedly
exhibit insulin resistance [2, 3]. Many studies have reported a link between
obesity, insulin resistance, and hyperinsulinemia in women with PCOS.
Obesity has become an epidemic in developed countries, not only in adults
but adolescents as well. In fact, one study estimates that 15% of adolescents
are overweight, a percentage that has tripled over the past two decades [4].
Therefore, concern is increasing over the possible effect on obesity related
syndromes, such as PCOS, especially in adolescents. Consequently, adolescent
obesity and PCOS is currently a topic of intense concern. 
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A b s t r a c t

Polycystic ovary syndrome (PCOS) is one of the most prevalent female
reproductive endocrinopathies, affecting many of women worldwide. We have
reviewed the literature regarding the linkage between obesity, insulin resistance,
and hyperinsulinemia in women with PCOS. Obesity has been reported as an
epidemic in developed countries, in adults as well as adolescents. We have
discussed the attempts to standardize the definition and diagnostic criteria for
PCOS, most notably at the National Institutes of Health (NIH) conference of 1990,
the Rotterdam conference of 2003, and the Androgen Excess Society (AES)
conference held in 2006. The lack of defined criteria for adolescent PCOS is
reviewed in this article. Additionally, the fascinating endocrine and metabolic
disorders associated with the syndrome are discussed. Various models that have
been proposed to explain the genetic nature of the disease: the “single-gene
mendelian” model, the “multifactorial” model, and the “variable expression-single
gene” model have also been enumerated. It is critical that the diagnosis of PCOS
be made early and periodic screening is essential for the detection
of the metabolic consequences of PCOS.

KKeeyy  wwoorrddss:: metabolic syndrome, hyperandrogenism, hyperinsulinimia, obesity,
genetics.
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Polycystic ovary syndrome is the most common
cause of menstrual dysfunction in teenage girls.
Although only a few studies focusing on
the prevalence of PCOS among adolescents have
been conducted, one reported the adolescent
incidence to be 3% [5, 6]. More than 50%
of adolescents exhibiting the features of this
disorder (hirsutism, acne, hyperandrogenemia, etc.)
are obese and at high risk for developing
type II diabetes [7, 8]. 

Attempts at standarization

The diagnosis of PCOS remains a subject
of contention. Several attempts have been made
to standardize its definition and diagnostic criteria,
most notably at the National Institutes of Health
(NIH) conference of 1990, the Rotterdam conference
of 2003, and the Androgen Excess Society (AES)
conference held in 2006. The AES requires
the specific presence of clinical and/or biochemical
hyperandrogenism in combination with either
polycystic ovary morphology and/or oligo-
anovulation [9]. The NIH consensus of 1990 defined
PCOS as the presence of both hyperandrogenism
and ovarian dysfunction, with no mention
of ovarian morphology. However, the Rotterdam
consensus included the presence of polycystic ovary
morphology along with hyperandrogenism and
oligo/anovulation [10]. Both the NIH and AES criteria
also stipulate that other causes of hyper-
androgenism, such as Cushing’s syndrome or
hyperprolactinemia, be excluded [11]. There are
three sets of criteria that have been proposed to
establish the diagnosis in adult women: the NIH
criteria, the Rotterdam criteria, and the Androgen
Excess Society guideline.

All three criteria agree that the exclusion of other
disorders is necessary. The 2003 Rotterdam criteria
require the presence two of three conditions: (1) oligo-
or anovulation, (2) clinical and/or biochemical signs
of hyperandrogenism, and/or (3) polycystic ovaries
on transvaginal ultrasound (12 or more follicles in each
ovary measuring 2-9 mm or increased ovarian
volume 10 ml of one ovary). This definition would
result in four subsets of PCOS: (1) irregular menstrual
pattern plus polycystic ovary morphology plus (clinical
or laboratory) hyperandrogenism, (2) irregular menses
plus hyperandrogenism, (3) hyperandrogenism plus
polycystic ovary morphology, and (4) irregular menses
plus polycystic ovary morphology. The last category
remains in dispute in regards to whether these
patients should be diagnosed under the broad rubric
of PCOS, because of some similar metabolic findings,
or whether such labeling is premature. The Andro-
gen Excess Society, published 2006, underscored
the need to define PCOS.

Currently, there is no defined standard to judge
and diagnose PCOS in adolescents for a variety

of reasons. First, ovulation is often irregular in early
menarche and thus, anovulation cannot be
considered a definite indication of the existence
of the syndrome [12]. Second, multifollicular ovaries,
which normally may be present in adolescent girls,
are difficult to differentiate from polycystic ones
[12]. Third, transvaginal ultrasounds are not
routinely performed in adolescents, which inhibits
the visualization of the ovaries and therefore
precludes any invasive diagnosis of polycystic
morphology [12]. Finally, there is little information
regarding normal levels of androgens in adolescents
and a lack of consensus on the chemical levels
of hyperandrogenemia. Therefore, determining
whether levels of androgens are abnormally high
is a complex task [12]. It appears that a diagnosis
of PCOS in this age group is mainly based upon
the criteria of clinical hyperandrogenism and
menstrual dysfunction [6].

Associated complications of polycystic ovary
syndrome 

Because irregular ovulation or anovulation is
typical in adolescents, the current basis of diagnosis
of PCOS in adolescents relies heavily upon clinical
signs of hyperandrogenism. In a recent study, 42%
of adolescent girls with oligomenorrhea – 22%
of whom also had polycystic ovaries – were found
to be positive for PCOS [13, 14]. This finding
suggests menstrual dysfunction in addition to
polycystic morphology is strong indicators of PCOS
in adolescents. 

Women and adolescents with PCOS present with
certain common physical characteristics. Many
experience excess male-pattern hair growth. This
symptom, termed hirsutism, is a marker
of hyperandrogenism and usually becomes
apparent at menarche. The patient may have acne
as well as dark pigmentation of the skin, usually
around the neck, which is known as acanthosis
nigricans. Polycystic ovary morphology is present
in some, but not all, women with PCOS. These
ovaries are enlarged and contain an increased
number of developmentally arrested, small antral
follicles [15].

Obesity, and in particular, central adiposity, is
another characteristic commonly associated with
the syndrome. Obesity increases the severity
of insulin resistance and propels hyperandrogenism
through various mechanisms [4]. All of these traits
are implicated in the internal conditions
of the PCOS woman. 

Insulin resistance

The effect of insulin resistance on PCOS is
complicated. Women with PCOS tend to have more
severe insulin resistance than their normal
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counterparts. Insulin resistance is found in
50 to 60% [3] of PCOS women, and 31% [16]
present with glucose intolerance. Insulin resistance
is often accompanied by hyperinsulinemia and
hyperandrogenemia. Consequently, both hyper-
insulinemia and hyperandrogensm are often
present in women with PCOS. As documented,
there is a cyclic relationship between hyper-
insulinemia and hyperandrogenism in PCOS
women; insulin induces the production of androgen,
which in turn propels visceral fat accumulation and
eventually exacerbates insulin resistance, leading
to severe hyperinsulinemia [14].

Hyperandrogenism is compelled by the actions
of insulin through various mechanisms. One such
mechanism is the dysregulation of sex hormone
binding globulin (SHBG). Hyperinsulinemia is known
to suppress the function of SHBG [16]. Once
concentrations of this globulin fall, it can no longer
bind to testosterone. Subsequently, levels of free
circulating testosterone rise and androgen production
increases. Studies support a negative correlation
between the concentration of SHBG and insulin [2].

A second mechanism by which insulin resistance
affects the production of androgens is through
the activation of gonadotrophin releasing hormone
(GnRH). Activation of GnRH leads to elevated levels
of lutenizing hormone (LH) [12], which eventually
causes the production of androgens at the theca
cell level. Conversely, the presence of hyper-
androgenemia has been indicated as a possible
cause of increased secretion of LH [16]. Once again,
the vicious cycle linking insulin resistance to
hyperandrogenism manifests itself in this positive
feedback system.

Androgen synthesis is further increased through
the actions of insulin on the ovary and pituitary
gland. The insulin dysfunction characteristic
of women with PCOS may occur due to dysfunction
of the insulin receptor or defects in the signaling
pathways involving insulin [15]. High concentrations
of insulin increase androgen secretion by over-
powering insulin receptors, which subsequently
reduces SHBG levels [15]. Additional androgen
production is propelled by the effects of excess
insulin, which serves to inhibit the synthesis
of insulin growth factor (IGF) binding proteins. This
allows IGF-1 to bind on the ovaries and increase
androgen production [17].

A study by Sawathiparnich indicates that
the level of insulin resistance is elevated in girls
with PCOS and is independent of obesity [18].
Glucose intolerance, which has been found to
increase the severity of insulin resistance and
hyperinsulinemia [19], is also a key component
of PCOS. In a study conducted by Palmert et al., 33%
of adolescent girls with PCOS exhibited impaired
glucose tolerance [18, 20]. Furthermore, another

study demonstrated that glucose intolerance was
present at higher percentages among obese PCOS
adolescents than in PCOS patients with normal
body weights [14]. Thus, not only are PCOS
adolescents already predisposed to severe insulin
resistance, but obese PCOS adolescents suffer
the effects of an exacerbated level of glucose
intolerance compounded with all other associated
symptoms.

Visceral fat/adiposity

Another common phenotypic trait of PCOS
women is visceral fat. Women with PCOS
demonstrate a comparatively high level of central
adiposity, even amongst those who do not present
with obesity [21]. The accumulation of fat in
the abdominal area has been correlated with an
increased presence of menstrual dysfunction,
acanthosis nigricans, and severe hirsutism [22].
Studies have further correlated the level
of androgens and the amount of visceral fat
present [14].

In adult patients and adolescents alike,
50 to 70% have increased central adiposity
accompanying PCOS [23, 25]. The consequences
of adiposity may be at hand even in adolescence
[24], especially in a society in which obesity is
rapidly becoming the norm [11, 25]. Increased
central adiposity has been shown to be directly
proportional to the level of insulin in the body and
also to the severity of insulin resistance [14, 26].
Visceral adiposity can incite insulin resistance and
metabolic syndrome [11, 25]. 

Central adiposity causes both androgen
production and is stimulated by it, feeding a vicious
cycle [27, 28]. Like their adult counterparts, PCOS
adolescents are believed to be at an elevated risk
level for developing diabetes mellitus or metabolic
dysregularities [29] due to androgen excess [11].
Currently, the diagnosis of PCOS does not consider
adiposity as an identifier of the syndrome. However,
the pathogenic effect of adiposity on hormonal
activity cannot be denied [11, 30].

Relationship of obesity and polycystic ovary
syndrome 

It is generally acknowledged that the existence
and proliferation of PCOS is closely tied to obesity.
Not only does obesity itself pose a risk in obvious
ways, but it also complicates and compels
the development of hyperinsulinemia and
hyperandrogenism. Women who are obese or
overweight naturally exhibit higher levels
of endocrine dysfunction. The presence of obesity
exacerbates these endocrinal disturbances. Thus,
it appears that being overweight both induces and
sustains PCOS. 
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There is an initiatory relationship between
obesity and the production of androgens [10]. In
a study by McCartney et al., it was determined that
obese girls exhibited higher levels of hyper-
androgenemia. Furthermore, the production
of androgens in itself could be a cause of PCOS
[11, 31]. This finding highlights obesity’s dynamic
role in PCOS: it is apparent that obesity, which is
caused by elevated levels of androgens, also
increases the production of androgens that lead to
the development of PCOS.

Obesity also exacerbates the abnormalities
concerning gonadotropin and sex steroid secretion
in women with PCOS. Further SHBG down-
regulation, a globulin already present in lower levels
in women with PCOS, is propelled by obesity [32]. 

Additionally, obesity negatively affects the ovary
by further disrupting the ratio of LH to follicle
stimulating hormone (FSH). One study determined
that LH levels were increased in obese women with
PCOS [4, 33]. This increased LH secretion will also
affect the production of androsteriodione in theca
cells, leading to an increase in androgen levels. 

Similarly to adult PCOS patients, obese
adolescent girls with PCOS appear to have a higher
rate of menstrual disturbance as well as elevated
levels of testosterone and free androgens [4]. Levels
of SHBG were lower in overweight adolescent
females than in PCOS adolescents who were not
overweight [24]. Moreover, as a function
of overweight and obesity, adolescent PCOS
females also exhibit higher levels of insulin which
promotes the production of androgen by the ovaries
[34]. Ultimately, obesity serves to both exacerbate
and instigate the problems of the syndrome.
Consequently, it is suggested that the earlier
the onset of obesity, the greater the consequences
for the young patient [11].

Ovarian dysfunction

Polycystic ovary syndrome impairs the theca and
granulosa cells of the developing follicle. Each cell
operates under the direction of LH or FSH to
produce steroids. The theca cell contains receptors
for LH, which stimulates the production of andro-
stenedione from cholesterol when bound.
Androstenedione then interacts within the granu-
losa cell. The periphery of the granulosa cells
contains receptors for FSH, which bind and
stimulate the aromatase enzyme to convert
androgens to estrogens. In the PCOS woman,
the roles of each cell are impaired, and the result
of this malfunction is hyperandrogenism. 

Theca cells

Patients with PCOS exhibit signs of increased
steroidogenesis and enhanced androgen activity

due to a greater number of theca cells. It has been
suggested that overproduction of androgens is
facilitated by the action of insulin on theca cells.
Insulin functions to upregulate the expression
of the P450c17 gene in theca cells, in addition to
enhancing the LH receptor activity of the cell
[35, 36]. The P450c17 gene encodes the enzyme
17-hydroxylase; this enzyme is responsible for
androstenedione production, which eventually is
converted to testosterone. Therefore, insulin
ultimately leads to the presence of excess
testosterone. Additionally, it is thought that insulin
may stimulate ovarian steroidogenesis by
mimicking LH activity [37]. Thus, hyperinsulinemia
plays a key role at the level of the ovaries in PCOS.

Granulosa cells

Aromatase inhibition within granulosa cells plays
a critical role in the development of hyper-
androgenemia. In women with PCOS, an imbalance
in the ratio of LH to FSH persists due to elevated
concentration of LH. Follicle stimulating hormone
is essential in stimulating the aromatase enzyme
for the conversion of androgen to estrogen.
However, the increased production of androgens
within the theca cells overpowers the capacity
of the granulosa cells. Thus, the concentration
of androgen remains elevated. 

Moreover, Mullerian inhibiting substances (MIS)
contribute to the accumulation of androgens and
the eventual arrest of follicular development. Mullerian
inhibiting substances are thought to inhibit aromatase
function [38]. Grossman et al. [39] concluded that
the presence of MIS in the granulosa cells leads to
a notable decrease in estradiol production [39].
According to a study conducted by Wachs, women
with PCOS have 3.4 times the typical amount of MIS
[40]. The results of these studies coincide with
the belief that MIS promotes androgen excess. 

Fetal disposition

Polycystic ovary syndrome manifests during
adolescence, suggesting a pre-pubertal or pre-natal
predispostion [1, 6, 31, 41]. According to one
hypothesis, PCOS occurs when a fetus is over-
exposed to androgens during its development. Many
studies on female animal models support this
concept. An analysis of sheep that were exposed to
excess androgens in-utero ascertained that
the GnRH pulse generator had been reprogrammed,
resulting in a decrease in sensitivity to estradiol
negative feedback [42, 43]. This alteration
of hormone levels leads to elevated LH levels,
causing issues in follicular development. Additionally,
the exposure seemed to be linked to an increase in
follistatin and a decrease in activin, which suppress
FSH and obstruct follicular growth [42]. Another
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study subjected female rhesus monkeys to high
levels of testosterone during in-utero development.
Later in life, these monkeys displayed hyper-
androgenism, ovulatory dysfunction, and defective
insulin secretion, all features associated with PCOS.
Increased levels of LH appeared only in monkeys
exposed to testosterone during early gestation,
which suggests that there is a critical time period
during which exposure leads to PCOS [44, 45].

Evidence for pre-natal and pre-pubertal
predisposition has also been supported by clinical
studies in humans. Both Hague et al. and Barnes et
al. conducted a study of women who were
prenatally exposed to high androgen levels as
evidenced either by congenital adrenal hyperplasia
or congenital adrenal virilizing tumors. After birth,
androgen levels normalized; however, many women
exhibited PCOS later in life [46, 47]. Another study
demonstrated an association amongst prenatal
androgen exposure, loss of P450 aromatase or SHBG
gene function, and PCOS [48, 49]. Unfortunately,
the precise mechanism of excessive androgens
during fetal development still remains unclear.

Polycystic ovary syndrome in pregnant mothers
is a potential cause of PCOS in offspring [50].
Various studies have demonstrated that pre-existing
elevated androgen levels in combination with
the hyperinsulinemia in pregnant women with
PCOS overexposes a fetus to high androgens levels.
Under normal conditons, placental aromatase
converts excess androgens to estrogens. In
the presence of hyperinsulinemia, aromatase
activity is inhibited. Consequently, pregnant women
with PCOS create a fetal environment with
increased exposure to androgens [50-53].
Additionally, exposure to high levels of insulin has
been implicated as a cause of low birth weight, and
birth weight is a potential marker of PCOS [1]. 

Extreme birth weight, either low or high birth
weight, can result from altered developmental
pathways, leading to severe adiposity in conjunction
with unhealthy diet patterns. This, in turn,
predisposes to hyperinsulinemia, hyperandrogenism,
and, after puberty, ovulatory dysfunction due to
issues with follicle growth and development. Poor
in-utero nutrition results in low birth weight and
subsequent fetal growth restriction. As a means
of survival, the fetus undergoes permanent
physiological and structural changes [54-57].
However, in the post-natal period, with subsequent
exposure to adequate nutrition and excessive
adiposity, PCOS features can develop [23, 31]. 

Conversely, women with elevated birth weights
maintain high levels of adiposity throughout early
childhood due to poor dietary patterns thereby
increasing their risk for PCOS [58-60]. Interestingly,
women with high birth weights more often exhibit
all three major criteria for PCOS diagnosis:

hyperandrogenism, anovulation, and polycystic
ovaries; whereas women with low birth weight
typically do not present with polycystic ovaries [58].

Childhood obesity, independent of fetal nutrition,
represents another potential factor in PCOS
development. It is associated with decreased SHBG
levels resulting in increased free testosterone and
insulin resistance with compensatory hyper-
insulinemia. Studies demonstrate obese adolescents
exhibit insulin resistance more often than their
normal weight counterparts. Increased insulin levels
promote ovarian androgen production, leading to
hyperandrogenism. Hyperandrogenism subsequently
distorts the hypothalamic pituitary ovarian axis,
resulting in a persistently rapid pulse from
the GnRH pulse generator, making the body
resistant to estrogenic negative feedback.
Consequently, adolescent women with PCOS have
higher LH levels and lower levels of FSH. Altered
hormone levels inhibit proper follicular development
and lead to the expression of PCOS during
adulthood [23, 31, 61, 62].

The role of obesity in the pathogenesis of PCOS
has been demonstrated in many studies. The
McCartney et al. study of 76 peripubertal girls found
that those who were overweight girls showed
greater rates of hyperandrogenemia when
compared to normal weight girls [31]. Another study
reported that total testosterone in obese
pre-pubertal girls was 40 to 50% higher than that
in age-matched equivalents, although the difference
was not statistically significant because of the small
sample size [63]. This was also demonstrated in
a study of pre-pubertal German girls, which found
that obese girls had lower SHBG levels and
a median testosterone concentration that was four
times greater than that of the normal weight girls
[61]. There is currently no definite causal
relationship between androgens and adiposity.
However, pre-pubertal obesity consistently seems
promote hyperandrogenism. Various studies have
demonstrated correlations between adiposity and
higher levels of testosterone, however some studies
conclude the two are independently related and
the correlation is attributed to an inverse
relationship between SHBG and adiposity [31].

In a recent study, Leibel et al. concluded that
the presence of metabolic syndrome in the father
of a woman with PCOS seemed to be more related
to the maternal PCOS. The prevalence of metabolic
syndrome was 1.5 to 2 fold greater in the fathers
of daughters with PCOS than in the average
population [64]. However, this association needs
further investigation. 

GnRH pulse generator

The GnRH pulse generator is a group
of hypothalamic neurons that release GnRH in
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a pulsatile manner. GnRH stimulates the secretion
of LH and FSH. Varying levels of LH and FSH control
follicular growth and development, effectively
regulating the menstrual cycle [65]. The frequency
of the GnRH pulse generator modulates
the differential production of LH and FSH [65, 66].
Rapid pulses favor the production of LH while
slower pulses favor the production of FSH [67-69].
Kirk et al. concluded this occurs as a result of rapid
GnRH pulses increasing the expression of follistatin.
Follistatin acts to inhibit the effects of FSH by
binding to intragonadotrope activin, therefore
favoring the production of LH [70]. In women with
normal ovulatory function, the GnRH pulses
gradually increase during the follicular phase and
peak in the later half, increasing LH production and
decreasing FSH production. Simultaneously, estradiol
production reaches a threshold due to positive
feedback, permitting the release of the LH, known
as the mid-cycle LH surge; this induces ovulation.
Ovulation is followed by the development
of the corpus luteum, which manufactures
progesterone. The progesterone subsequently slows
the GnRH pulse generator, emitting pulses that
favor FSH, and creating what is known as an FSH
window. This is responsible for initiating the next
wave of follicular growth and development [71-75].

Women with PCOS, however, have invariably rapid
GnRH pulse frequencies in favor of LH [76]. Thus,
these women typically present with persistently
elevated LH levels and LH:FSH ratios [77]. LH acts as
a stimulatant for ovarian androgen production.
Women with PCOS, therefore, present with
hyperandrogenemia. Blank et al. postulated that
the systemic issues in women with PCOS may be
the result of failure to suppress GnRH pulsatility [66]. 

Long-term consequences of polycystic ovary
syndrome 

Over time, PCOS can cause serious health
conditions. It is critical for physicians treating PCOS
patients to understand how the varying
pathophysiologies of the disease can combine to
cause additional health issues. Women with PCOS
often develop hyperandrogenism, hirsutism, and
insulin resistance and experience excessive weight
gain. The synergy of these symptoms can result in
health issues such as metabolic syndrome,
cardiovascular disease, type II diabetes mellitus,
cancer, sub-fertility, and psychological distress
[2, 9, 19, 29, 78-93].

Metabolic syndrome

Metabolic syndrome is characterized by several
risk factors that can lead to cardiovascular disease,
which is a major long-term consequence associated
with PCOS. Characteristics of metabolic syndrome

are abdominal obesity, increased levels
of triglycerides, hypertension, increased plasma
levels of fasting glucose, hyperinsulinemia, and
decreased levels of high density lipopro-
tein cholesterol (HDL-c) [17, 94]. The condition is
particularly related to PCOS because of
the prevalence of insulin resistance [17].
Furthermore, adolescent girls with PCOS are at
higher risk for developing metabolic syndrome
because they already exhibit these risk factors at
a young age [88]. Coviello et al. reported that
the prevalence of metabolic syndrome in young girls
with PCOS was 37 vs. 5% in a control group
of normal girls. The study also found that obesity
and insulin resistance were risk factors for
metabolic syndrome but that hyperandrogenemia
was the only constant predictor of the syndrome.
After adjusting for body mass index (BMI) and
insulin resistance, adolescent girls with PCOS had
almost four times the risk of metabolic syndrome
for every 25% increase in free testosterone in
comparison with the control group [95]. Body mass
index and waist circumference, a measure
of abdominal fat, were found to be predictors
of cardiovascular disease [96]. In the Coviello study,
the prevalence of metabolic syndrome was 62% in
obese women with PCOS and 63% in extremely
obese women with PCOS [95].

Adolescence is a critical time to recognize
the risks associated with metabolic syndrome
because its onset during adolescence is correlated
with the development of cardiovascular disease in
adulthood [97]. The syndrome also contributes to
hyperandrogenemia, further exacerbating the cycle
of accumulating risk factors for the disease [95].
The combination of metabolic syndrome and PCOS
promotes higher levels of androgens in the body
[98], which can act on androgen receptors located
on adipocytes, causing further accumulation
of intra-abdominal fat [99]. Central adiposity is
a factor in both PCOS and MS, which contributes
to the vicious cycle of hyperinsulinemia and
hyperandrogenemia. Patients with PCOS who suffer
from metabolic syndrome also have lower high
density lipoprotein cholesterol (HDL-c) levels, higher
low density lipoprotein cholesterol (LDL-c) levels,
and higher levels of triglycerides than girls who only
have PCOS [95]. These factors present an added
cardiovascular risk in young PCOS patients [97].

Young PCOS patients should be counseled about
ways to prevent metabolic syndrome in order to
avoid cardiovascular disease and type II diabetes
mellitus in adulthood [17]. Data collected about
abdominal fat and triglyceride levels in girls
aged 9 through 11 was found to be predictive
of whether a patient would develop the syndrome
before entering their twenties, demonstrating
the necessity to emphasize the importance
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of a healthy lifestyle early in life [100]. Furthermore,
rates of metabolic syndrome in adolescence increase
concurrently with body weight, reaching a prevalence
of 50% in excessively obese children [20, 25, 101, 102].
Consequently, it is critical to recognize that
the symptoms of PCOS can exacerbate
the development of metabolic syndrome and that it
is essential for patients with PCOS to initiate proper
diet and exercise at an early age to reduce
the likelihood of developing the syndrome [95]. 

Another complication associated with PCOS is
nonalcoholic fatty liver disease (NAFLD), which is
usually considered the hepatic component of MS
[103]. One of the most common causes of liver
disease in western countries [104, 105], NAFLD is
characterized by steatosis or fibrosis of the liver
[105]. A more aggressive form of the disease is
nonalcoholic steatohepatitis (NASH), which is
characterized by “necroinflammatory changes” and
pericellular fibrous degeneration [106]. Patients with
NASH are at a greater risk of developing serious
conditions such as “advanced fibrosis, cirrhosis, and
hepatocellular carcinoma” [107]. NAFLD and NASH
share the risk factor of insulin resistance,
a common problem associated with PCOS [108-110].
Approximately 50% of PCOS patients exhibit insulin
resistance and also have metabolic syndrome.

A study conducted by Cerda et al. determined
that the prevalence of NAFLD in PCOS patients
was 41%, which was significantly higher than
the prevalence of the disease in the control group
(19%) [106]. Additionally, the PCOS patients in
the study had a much higher frequency of insulin
resistance; 63 vs. 31% in the control group. The
relationship between insulin resistance and NAFLD
in PCOS patients was also related to their BMI:
a higher BMI promoted increased levels of insulin
resistance, which acted to increase the prevalence
of NAFLD [111]. Another serious finding of the study
by Cerda et al. is that PCOS women have high levels
of aminotransferase, which is an indicator for
the development of NASH [106]. Overall, this study
demonstrated the importance of early detection
and treatment of liver disease in PCOS patients to
avoid serious complications like NASH, which is
more amenable to treatment during adolescence
[104, 112].

Cardiovascular disease

The development of cardiovascular disease and
other vascular conditions is a serious consequence
associated with PCOS. Similarly, as in the develop-
ment of metabolic syndrome, the pathophysiology
of PCOS is also related to cardiovascular diseases.
Obesity, high blood pressure, type II diabetes,
insulin resistance, dyslipidemia, abdominal fat, and
decreased ability to break down blood clots – all
factors that relate to PCOS – also put PCOS women

at a greater risk for heart disease. High androgen
levels in the body also play a critical role in
the development of heart disease as calcification
of the aorta is related to hyperandrogenemia
independent of BMI, age, and incidence of PCOS,
highlighting their significant role in the deve-
lopment of the disease [113]. All of these are risk
factors for heart disease. Obesity during
adolescence was also correlated with carotid intimal
medial thickening, which may partly explain how
PCOS predisposes women with a high BMI and
hypertension to vascular diseases [114, 115].
Additionally, another study found that women with
PCOS who have a combination of insulin resistance,
high blood pressure, and dyslipidemia also have
a greater chance for developing cardiovascular
disease and cerebral vascular issues [116]. 

In a recent study by Battaglia et al., PCOS
women had higher white blood cell counts than
healthy women (7,273±789 vs. 6,182±1,004,
respectively). Studies have discovered that
increased inflammation can lead to the onset and
progression of atherosclerosis. Consequently, this
finding further emphasizes that women with PCOS
are prone to heart disease [117]. The study by
Battaglia et al. also found that in PCOS women,
the mean (SD) level of homocysteine was 11.5±0.5
vs. 9.8±1.5 µmol/l in the control population. Homo-
cysteine levels have long been recognized as a risk
factor for heart disease [118]. The elevation
of homocysteine levels combined with advancing
age [117] puts POCS women at risk for heart disease
[119]. 

Furthermore, lipid and androgen levels were
linked with cardiovascular disease in patients with
PCOS. Previous studies have connected insulin
resistance to dyslipidemia, a condition found in
PCOS women, because insulin plays a role in
the up-regulation of lipoprotein-lipase. However,
the Battaglia study found that lipid levels were also
correlated with androgen levels, triglyceride levels,
and cholesterol, independent of the insulin levels
in the body. This finding was confirmed by the fact
that the atherogenic index, a marker that is used
to determine one’s risk for heart disease [120], is
correlated with higher levels of androgens,
triglycerides, and cholesterol levels in PCOS
women 117]. The atherogenic index is defined as
the log (triglycerides/HDL-c) and has been found to
be related with one’s risk for heart disease [120].
This relationship highlights the fact that high
androgen levels and dyslipidemia may be related
to the development of heart disease [117].

The pathophysiology of PCOS also puts women
at risk for other vascular problems. Low levels
of NO2

–/NO3
– combined with lipid dysregulation and

high levels of androgens impede vasodilation in
the endothelium of PCOS women, a condition
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which can precede other vascular diseases [117].
Measurements of ophthalmic nerve pressure were
obtained from PCOS women and used to estimate
cerebral pressure. Polycystic ovary syndrome women
had increased pressure in their ophthalmic nerves,
which may be due to increased arterial stiffness
caused by calcification, lower amounts of NO2

–/NO3
–,

and more deposits of triglycerides in the arteries
[117]. In obese individuals with PCOS, this effect
could be magnified because obesity can put
pressure on the right side of the heart and reduce
the reuptake of cerebrospinal fluid, which causes
increased pressure on the brain [121, 122]. Increased
cerebral pressure is also related to another disease
called idiopathic intracranial hypertension or IIH
[123]. Symptoms include papilledema, impaired
vision, increased cerebrospinal fluid pressure, and
headache [124-128]. 

Type II diabetes mellitus

The combination of abdominal fat, obesity,
insulin resistance, and β-cell dysfunction in women
with PCOS creates an environment in the body that
makes them more susceptible to type II diabetes
mellitus [83, 85, 88, 100, 129-131]. Type II diabetes
mellitus can exacerbate the already fragile vascular
state of PCOS patients and can decrease
the amount of blood flow to the brain [132]. Women
with PCOS are at a greater risk for developing
diabetes than healthy women. Long-term studies
of women with PCOS have observed that 13 to 16%
developed diabetes over a three- to eight-year
period [133, 134]. The prevalence of the disease in
women without PCOS is only 2% [135]. Additionally,
the combination of obesity and PCOS is particularly
harmful [136]. Obese women with PCOS have ten
times the risk of developing the disease than
non-obese PCOS patients [135] and five times
the risk of developing type II diabetes mellitus than
non-PCOS women when obesity and age were
controlled [133]. 

Gestational diabetes mellitus (GDM), an
intolerance to carbohydrates that begins during
the early stages of pregnancy, is another problem
afflicting PCOS patients, especially those who are
already suffering from type II diabetes mellitus [137-
142]. Risk factors for GDM non-Caucasian ethnic
backgrounds, advanced age, obesity, intolerance to
glucose, and a previous experience with GDM
during pregnancy [139-143]. The pathophysiological
factors of PCOS that predispose women to GDM are
obesity, glucose intolerance, and type II diabetes
[20, 144-146]. In a study examining the prevalence
of GDM in women with PCOS, the authors
determined that women with PCOS have twice
the risk of developing GDM in comparison to
women without PCOS after controlling for age, race,
and the number of previous pregnancies [147]. This

finding highlights the necessity for clinicians to
counsel their PCOS patients about the development
of the disease during their pregnancies and to
provide screening. 

Cancer

Although no definite correlation between cancer
and PCOS has yet been established, women with
PCOS are predisposed to cancers, in particular
endometrial carcinoma (EC). It is considered
conscientious practice to be aware of the re-
lationship between PCOS and EC [148], especially
since EC is the most common form of gynecological
cancer in the United States [149]. High levels
of unopposed estrogen, infertility, and symptoms
of metabolic syndrome like obesity, glucose
intolerance, and high blood pressure are all risk
factors for EC [17, 150]. Persistent estrogen
stimulation of the endometrial tissue combined
with a lack of negative feedback or opposition by
progesterone due to dysregulation of the menstrual
cycle has been found to be a risk factor for EC as
well [151]. Furthermore, oligomenorrheic women
were found to have cancer genes that were
activated in their endometrium earlier in life than
in normally cycling women [152]. Other studies
reported altered expression of genes that are
related to EC in women with PCOS [153]. The
elevated levels of androgens in women with PCOS
have also been correlated with EC; women with EC
had three times the levels of androgens than
controls [154]. Additionally, women with EC had
higher levels of testosterone and androstenedione
in their ovarian veins than with women without
the disease [155]. Furthermore, androgens were
discovered to have stimulatory effects on EC cells
[156, 157]. Because of their reduced fertility, women
with PCOS are more likely to be nulliparous than
the normal women, which is another factor relating
to the development of EC [158]. Another hormone
that is dysregulated in both PCOS and EC is LH. 
LH levels are elevated in 65% of women with PCOS
and women with EC have an over proliferation of LH
receptors, which suggests a possible correlation
between the two diseases [159].

Impact of polycystic ovary syndrome
on psychological state

Studies have also been conducted to assess
the psychological state of women who are suffering
from PCOS. The objective in these studies was to
determine the effect PCOS has on quality of life or
psychological morbidity [160]. Some studies have
indicated that women with PCOS have a lower
health-related quality of life (HRQoL), especially in
regards to sex, self, and health [161]. Women with
PCOS also have been determined to have higher
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levels of psychological distress than healthy controls
[162] and a physiological morbidity of 62.4 vs. 26.4%
in the control population [160]. The common
symptoms of obesity and hirsuitism seen in PCOS
contributed largely to the decreased self confidence
and body image demonstrated in these women
[160]. Women with a higher BMI were found to have
a lower quality of life [160] and similarly, women
with hirsutism indicated higher levels of social
anxiety [163]. These findings are particularly
noteworthy for clinicians working with young
women with PCOS because adolescence is
a sensitive developmental period [164]. Adolescent
patients possibly experience negative effects later
in life associated with the stress of living with
the physical manifestations of the disease at such
an early age. However, one study discovered that
adolescent patients who received detailed
information about the disease had a greater
psychological quality of life than other, less
informed patients [160]. Therefore, it is critical that
clinicians serve as a reassuring and supportive
source of information for their adolescent patients.

Lifestyle changes

Although the long-term consequences of PCOS
are varied, many stem from the same underlying
pathophysiological factors. Lifestyle changes can be
utilized to prevent many of the diseases associated
with PCOS. Therefore, it is critical to identify PCOS
in adolescent girls to initiate these changes
immediately and to prevent the onset and
progression of other diseases such as
type II diabetes, cardiovascular disease, and cancer.
These diseases can be avoided by making healthy
lifestyle choices such as exercising regularly and
maintaining a nutritious, low-fat diet. In addition, it
is recommended that women with PCOS be
screened for the most common long-term
consequences in order to determine their risk for
developing these complications and/or detect them
early. For example, adolescents with PCOS or high
levels of androgens should be screened regularly
with oral glucose tolerance test [136]. 

Genetics of polycystic ovary syndrome

Polycystic ovary syndrome is believed to have
a complex genetic trait [165] in which a variety
of genes interact with the environment to produce
the disease [166]. Because of its varied
pathophysiology and the fact that it shares many
of its symptoms with other syndromes, it is
necessary to rule out other genetic disorders such
as 21-hydroxylase-deficient non-classic adrenal
hyperplasia (NCAH) when diagnosing PCOS [167].
There are several models that have been proposed
to explain the genetic nature of the disease:

the “single-gene mendelian” model, the “multi-
factorial” model, and the “variable expression-single
gene” model [9]. The “single-gene mendelian”
model is based on the assumption that
the mutation that causes PCOS is unique to
the disease and is the result of a single-gene
mutation. This would cause the disease to be
inherited in a recessive or dominant manner [9].
The “multifactorial model” assumes that
the changes that take place in PCOS are not specific
to the disease; they may be implicated in other
syndromes and already exist in the population, but
in combination, they act to cause PCOS [9]. The
“variable expression-single gene” model is
a combination of the other two models. It proposes
that PCOS is caused by a single-gene defect but
the severity of the disease is modulated by other
genetic or environmental factors [9].

Most studies of the genetic factors underlying
PCOS have followed the candidate gene approach,
which utilizes genetic markers such as single
nucleotide polymorphisms (SNPs) [167]. Geneticists
have examined pathways that are related to
the pathophysiology of PCOS in order to identify
candidate genes for further examination. These
pathways include steroid production, folli-
culogenesis, weight gain, hormone function, and
insulin function [9, 167]. 

Familial studies have also provided evidence to
the genetic basis underlying PCOS. Some evidence
suggests that the disease is more common in
families than in the general population [86]. In
a study examining the prevalence of PCOS in female
relatives, 35% of premenopausal mothers and 40%
of sisters had the disease [168]. These statistics
provide a stark contrast with the prevalence
of the disease in the general population, which is
only 6 to 8% [2, 16]. A study of brothers of mothers
with PCOS also revealed that they have elevated
androgen levels [86]. Familial studies have also
distinguished a genetic basis for insulin resistance
and secretion dysfunction [167]. A study performed
in the Australian population discovered that in
families with a member with PCOS, almost 70%
of the other members were resistant to insulin
[169]. It was also found that β-cell dysfunction in
PCOS may in part be determined by genetic
inheritance [170]. 

The genetic basis of insulin dysregulation was
also suggested by examination of cell function. The
abnormal uptake and signaling responses
of the cells of PCOS women may be due to
dysregulation or mutations in the insulin-signaling
pathway [171-173]. The regulation of androgens in
women with PCOS appears to be unaffected by
other hormones and feedback systems. This
observation was demonstrated by an experiment
in which theca cells removed from women with
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PCOS continued to secrete testosterone inde-
pendently in culture [174]. 

Recent studies of candidate genes

Recent studies have identified new candidate
genes for PCOS in the areas of androgen production
and regulation and insulin regulation. Goodarzi et
al. studied SRD5A1 and SRD5A2, which code for
the isoforms of 5α-reductase, the enzyme which
converts testosterone to dihydrotestosterone (DHT).
Levels of this enzyme are frequently elevated in
women with PCOS [175-179]. Transcripts of both
of the genes were discovered in the ovary, and
these may play a role in the arrest of follicle
development. The study discovered that the genes
had haplotypes related to an increased susceptibility
to PCOS. Specifically, for the SRD5A1 gene, the TA
haplotype was found in almost 15% of the PCOS
population while only in 10% of controls. The
SRD5A1 gene was also found to have a variant that
was related to the severity of hirsutism. In addi-
tion to a haplotype, which increased the risk
of developing PCOS, gene SRD5A2 also had
a haplotype that decreased the risk of PCOS [167]. 

Another study of androgen function in PCOS
examined the action of the aromatase gene. It has
been documented that decreased action
of the aromatase enzyme, which converts
androgens to estrogens, can lead to PCOS [180].
Furthermore, loss of function mutations in
the aromatase gene (CYP19) have been observed
in PCOS patients [181-183]. Excess levels
of androgens in the ovaries were also linked to
the stimulation of precocious pubarche [184, 185],
a risk factor for PCOS [186]. A recent study by Petry
et al. determined that the distal promoter region
of the gene that codes for aromatase has genetic
variations that are related to androgen levels and
hyperandrogenism in young girls. Regulation
of androgens was examined in a study of the
variations in genes related to the control
of dehydroepiandrosterone sulfate (DHEAS)
– a marker for the production of adrenal androgen
– in women with PCOS. Approximately 25%
of women with PCOS have extremely high levels
of DHEAS and the majority of PCOS patients have
levels that are moderately elevated [187]. DHEA
sulfotransferase is coded for by the gene SULT2A1
and it acts to add a sulfonate group to
dehydroepiandrosterone (DHEA), a metabolite
of andrenal androgen. Conversely, the sulfonate
group of DHEAS is removed by steroid sulfatase
(STS). Therefore, these genes are useful markers
for examining dysregulation of androgen levels in
patients with PCOS. Additionally, DHEAS levels in
the body do not seem to be regulated by insulin or
hormones suggesting that PCOS is under genetic
control [188-192]. One study discovered that

a haplotype and an SNP within the SULT2A1 gene
were both related to lower levels of DHEAS in
women with PCOS [193]. However, no association
was found between variation in the STS gene and
androgen levels in women with PCOS [193].
Furthermore, it seems that DHEAS levels are more
influenced by genetic factors in women than in men
[194]. The results from this study indicate that
the variation in the gene SULT2A1 may not be a risk
factor for the disease but could modulate the amount
of excess adrenal androgens in PCOS [193].

A recently proposed mechanism for insulin
resistance in PCOS has also been proposed involves
abnormal phosphorylation after the binding of
insulin to its receptor which causes changes in
the signal transduction pathway. It appears that in
insulin resistant women with PCOS, serine (Ser)
residues were phosphorylated, impeding the activity
of the tyrosine kinase activity, which is critical in
the normal insulin receptor pathway [17].
Dysregulation of the insulin pathways contributes
to the hyperandrogemia in women with PCOS.
Excess levels of insulin can bind to type 1 IGF-1
(insulin growth factor-1) receptors, which increases
the response of the thecal cells to LH and produces
higher levels of androgens. Additionally, excess
levels of insulin decrease the binding ability
of SHBG, which also contributes to increased
androgen levels in PCOS. High levels of insulin in
the body can also prevent the synthesis
of the protein that binds with IGF-1, which leads to
elevated levels of IGF-1 and hyperandrogenemia [17]. 

Genetic approaches have also been employed to
study ovarian function. A study comparing
the pattern of gene expression in the ovary in
normal women and those with PCOS found that
there were 119 differentially expressed genes. Many
of the identified genes were involved in cellular
metabolism and control of gene expression,
indicating that PCOS is a complex, multifactorial
syndrome [195]. One gene that was found to be
downregulated in PCOS women is NR4A1, which
plays an integral role in the induction of apoptosis.
It is believed that dysregulation of apoptosis factors
in the ovary can lead to an imbalance in the cycles
of germ cell death and follicular atresia. This
dysregulation could lead to the accumulation
of arrested follicles in the ovary. NR4A1 is mainly
expressed by the thecal cells, which suggests that
its downregulation in PCOS could be associated
with the excess of the theca cells in PCOS women
[196]. Another interesting gene identified in this
study was the SET (SET translocation) gene, which
is involved in the regulation and production
of androgens controlled by P450c17. Abnormal
expression of this gene may contribute to the high
levels of androgens present in PCOS patients [195].
A comparison of the mRNA of oocytes between
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women with PCOS and healthy women found that
PCOS oocytes have abnormalities in gene
expression that could lead to reduced fertility.
The 374 genes identified were involved in several
areas essential to reproductive function such as
chromosome alignment, the regulation of the cell
cycle, and the function of the spindle [197].
Additionally, several genes that were categorized as
“maternal-effect” genes, which help regulate zygote
development [198], were expressed in elevated levels
in the oocytes of women with PCOS. These
abnormalities in the oocyte could lead to later com-
plications in the development of the embryo [197].

Another mechanism proposed to explain
the genetic background of PCOS is the follicle
stimulating hormone-granulosa cell (FSH-GC) theory.
This theory states that decreased levels of FSH
diminish the action of cytochrome P450 aromatase
in granulosa cells, causing the accumulation
of androgens in the body. This could occur due to
various impediments that cause abnormal
expression of P450 aromatase such as problems in
signaling and insufficient levels of FSH to stimulate
the gene expression of P450 aromatase [199].

Limitations

It is important to note that many of the studies
discussed in this paper were limited by small control
populations and an insufficient number of genetic
variants. In addition, the phenotype of PCOS is
difficult to determine in all the groups that it affects:
young girls, women, and men. Diagnosis is
challenging because the phenotypes of the disease
are compounded by other syndromes that have
similar phenotypes and ethnic factors and
the criteria for PCOS has not yet been standardized
[167].

Conclusions

Polycystic ovarian syndrome is the most
common endocrine disorder in women. Potential
complications such as metabolic syndrome (MBS)
manifest due to the hyperandrogenemia and
insulin resistance associated with the syndrome.
Adolescent PCOS may be characterized by earlier
onset of hyperinsulinemia and insulin resistance.
In adolescents, PCOS classically manifests post
menarche, but it is not uncommon for patients to
exhibit symptoms of the disease premenarche 
or in addition to precocious puberty. Review
of the existing literature indicates that MS or,
alternatively, individual metabolic risk factors may
be present in PCOS patients and most importantly
that MS may arise at a significantly younger age
among PCOS women. The fact that a reproductive
disorder like PCOS could have a significant
metabolic impact on affected adolescents has

generated medical interest on the mechanisms
underlying the multiplicative sequelae of PCOS.
Although obesity indisputably compounds
the clinical course of women with PCOS, this
appears to be just the tip of the iceberg. Insulin
resistance and hyperinsulinemia have also been
implicated as critical components due to their
contribution to the pathophysiology and clinical
presentation of both PCOS and MS. Hyper-
androgenemia, the predominant endocrine
hallmark of PCOS, has also been implicated as
a contributing factor to the suggested
interrelationship. Polycystic ovary syndrome is
believed to have a complex genetic trait in which
a variety of genes interact with the environment
to produce the disease.
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