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Introduction

Pancreatic neuroendocrine neoplasms (PNENs) 
represent a  rare entity that nevertheless has a high 
clinical importance due to the growing incidence 

and distinct biological properties of neuroendocrine 
tumours [1, 2]. Although PNENs have significantly 
better prognosis than does the more common pancre-
atic ductal adenocarcinoma, novel therapeutic strate-
gies are still needed [3], therefore the cornerstones of 
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The study represents a comprehensive retrospective morphological and immuno-
histochemical profiling of pancreatic neuroendocrine neoplasms (PNENs) in order 
to reveal the associations between morphological and molecular parameters. The 
local tumour spread (T), presence of metastases in regional lymph nodes (N) and 
distant organs (M), tumour grade (G) and resection line status (R) by pathology 
findings (pTNMGR), mitotic activity, perineural, vascular and lymphatic inva-
sion were assessed in 16 surgically resected PNENs. By immunohistochemistry, 
expression of Ki-67, p53, p27, p21, cyclin D1, Bcl-2, E-cadherin, CD44, vimen-
tin, cyclooxygenase 2 (COX-2), microvascular density, and cytokeratin (CK) spec-
trum, along with neuroendocrine, intestinal and squamous markers were detected. 
Descriptive statistics, Chi-square test, Spearman’s rank correlation, Mann–Whit-
ney and Kruskal–Wallis methods were applied; p < 0.05 was considered signifi-
cant. Ki-67, CK19, p63, vimentin and COX-2 were significantly up-regulated in 
PNENs in comparison to benign pancreatic islets. A complex network of morpho-
logical and molecular associations was identified. Ki-67 correlated with PNEN size 
(p = 0.022), the World Health Organization 2004 and 2010 classification grades 
(p = 0.021 and p = 0.002), stage (p = 0.028) and mitotic count (p = 0.007) but 
among molecular markers – with CK19 (p = 0.033) and vimentin (p = 0.045). 
CK19 was significantly up-regulated in PNENs, having higher pT (p = 0.018), 
pR (p = 0.025), vascular (p = 0.020), perineural (p = 0.026) and lymphatic 
invasion (p = 0.043). In conclusion, proliferation activity (by Ki-67), E-cadher-
in, vimentin and CK19 are important molecular characteristics of PNENs due to 
significant associations with morphological tumour characteristics, pTNMGR and 
invasive growth. 
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PNEN carcinogenesis must be evaluated. Here, we 
present an integrated molecular and morphological 
study of PNENs. The proteins that hypothetically 
can be involved in PNEN development include pro-
liferation markers, notably Ki-67 [4], tumour sup-
pressor p53 [5], cell cycle regulators p21, p27 and 
cyclin D1 [6-8], anti-apoptotic protein Bcl-2 [5], cell 
adhesion molecule E-cadherin [9] and cancer stem 
cell marker CD44 [10, 11]. The cytokeratin (CK) 
spectrum, in addition to intestinal and squamous 
markers, is widely used in the assessment of tumour 
histogenesis; however, cytokeratin-associated cell 
plasticity or differentiation can confer a pathogenetic 
role that should be evaluated as well [2, 12, 13]. Ep-
ithelial-mesenchymal transition [14], cyclooxygen-
ase 2 (COX-2) induction [3], and angiogenesis [15] 
also represent reasonable research targets. However, 
the present data are still controversial. In addition, 
most of the studies have been devoted to few isolated 
proteins. We hypothesised that the molecular profile 
is associated with certain morphological parameters 
and these correlations can identify target proteins 
that are significantly involved in the development of 
PNENs. Thus, the aim of this research is to detect 
the morphological and immunohistochemical profiles 
of pancreatic neuroendocrine neoplasms in order to 
reveal the associations between these parameters. 

 Material and methods

The study quintessence, ethical principles  
and case selection

A retrospective morphological and immunohisto-
chemical investigation of PNENs was carried out in 
accordance with the Declaration of Helsinki and was 
approved by the Committee of Ethics of Riga Stradins 
University (E-9(2), issued on October 06, 2011). Con-
secutive cases were identified using an archive search 
in a  single university hospital (2004-2014). The in-
clusion criteria comprised a verified unequivocal mor-
phological diagnosis of PNEN in the tissue material 
submitted after the potentially curative operation. 
Patients that had a  tumour of different histogenesis 
or of equivocal origin, as well as those that underwent 
biopsy only or received preoperative chemotherapy or 
radiotherapy were excluded from the study. 

Surgical pathology evaluation

The pathology data were obtained via uniform, 
protocol-based gross and microscopic examinations of 
the pancreatic surgery materials. Grossly, tumour lo-
calisation and largest diameter were detected, among 
other findings. Consecutive sections of the whole pan-
creas were obtained at a distance of 5 mm. The lymph 
nodes (LN) were entirely submitted for microscopic 

investigation by anatomic compartments. After spec-
imen inking, the resection margins (RM) were com-
pletely submitted for microscopic investigation in ac-
cordance with the Leeds Pathology Protocol [16, 17]. 
In short, proximal and distal transection margins of 
the stomach and duodenum, respectively, as well as 
the circumferential (anterior, posterior and superior 
mesenteric vein groove) RM of the pancreas and tran-
section margins of pancreatic neck and distal bile duct 
were investigated. The samples were routinely fixed 
in neutral buffered 10% formalin (Sigma-Aldrich, 
Saint Louis, USA), processed and stained with hae-
matoxylin and eosin. The slides were examined under 
light microscopy (Leica DM500, Wetzlar, Germany) 
to detect histological tumour type and grade [1, 18], 
the local tumour spread (T), presence of metastases 
in regional lymph nodes (N) and distant organs (M), 
summarised into pTNM [19], status of RM [16, 17], 
mitotic count and vascular, and peri- and intra-neu-
ral, as well as lymphatic vessel invasion. To link the 
study to both the previous and forthcoming publica-
tions, the grade was assessed using both the World 
Health Organization (WHO) clinico-pathological 
classification of tumour differentiation and behaviour, 
issued in 2004 (further designated as grade 2004) and 
the WHO grading, issued in 2010 (further designat-
ed as grade 2010), as described in the literature [1, 18]. 
To detect the mitotic activity, mitoses were counted in 
40 consecutive high-power fields (HPFs) within the 
mitotically most active areas, applying 400× magni-
fication (0.20 mm2 per field corresponding to 2 mm2 

per 10 HPFs) and recalculating to 10 HPFs/2 mm2 
[1]. The peri- and intra-neural growth, as well as vas-
cular and lymphatic invasion, was evaluated as cate-
gorical variables. 

Immunohistochemical visualisation  
and assessment

Immunohistochemical visualisation (IHC) was 
performed on representative blocks of tumour and 
non-neoplastic pancreatic tissues. For IHC, 3-mi-
crometre-thick sections were cut using an electronic 
rotary microtome Microm HM 360 on electrostatic 
glass slides (Histobond, Marienfeld, Germany). After 
deparaffinisation, antigen retrieval was performed in 
a microwave oven (3 × 5 min) using a basic TEG 
(pH 9.0) buffer, followed by blocking of endogenous 
peroxidase (Sigma-Aldrich). The sections were in-
cubated with primary antibodies (Table I) at room 
temperature in the magnetic incubation tray. Bound 
antibodies were detected by the enzyme-conjugated 
polymeric visualisation system EnVision, linked with 
horseradish peroxidase using 3,3’-diaminobenzidine 
as the chromogen. All IHC reagents were produced 
by DAKO, Glostrup, Denmark. Positive and nega-
tive quality controls were invariably performed and 
reacted appropriately. The IHC reactivity was clas-
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sified into three intensity levels: low, moderate and 
high. Only moderate or high intensity expression was 
considered positive, and the relative amount of posi-
tive cells was detected as the percentage within 400 
sequential tumour or islet cells. If less than 400 cells 
were available in the tissue section, the case was ex-
cluded from evaluation of the particular antigen ex-
pression. For a case to be considered positive, the rel-
ative amount of positive cells had to reach the cut-off 
value [20-28], as shown in Table I. To detect the mi-
crovascular density (MVD), the endothelial layer was 
highlighted by membranous CD34 expression. Four 
hot spots of the target tissue were identified by whole 
slide scanning at low power (100×) and assessed on 
HPF. The MVD was calculated as the mean amount 
of microvessels per HPF in a hot spot, counting only 
vessels with a clearly defined lumen or well-defined 
linear shape. 

Statistical analysis

The statistical analysis was performed using the 
IBM SPSS Statistics Version 20.0 statistical software 
package (International Business Machines Corp., Ar-
monk, New York, United States of America). The 

confidence interval was calculated using the Confi-
dence Interval Analysis software [29]. The assump-
tion check of normality was performed using a Shap-
iro-Wilk test. The descriptive data were expressed as 
mean ± standard deviation (SD), median with inter-
quartile range (IQR) or relative frequency with 95% 
confidence interval (CI). Descriptive statistical meth-
ods, such as descriptive and cross tabulation with 
Pearson’s χ2, bivariate correlation as Spearman’s rank 
correlation coefficient, and non-parametric methods, 
such as Mann–Whitney U test and Kruskal–Wallis 
one-way analysis of variance by ranks, were used. The 
post-hoc analysis with Bonferroni correction was ap-
plied to determine differences between three or more 
groups. The p-values of < 0.05 were considered sta-
tistically significant [30].

Results

Clinical and morphological characteristics 

During the study period, surgical treatment for 
PNENs was performed in 16 patients. The mean  
± SD age was 59.4 ±9.2 years (range, 47-78) and 

Table I. Characteristics and evaluation of immunohistochemical panel 

Antigen Antibody Clone Dilution Time, min. Pattern Cut-off, %

Ki-67 protein MMAH MIB-1 1 : 100 60 Nu None 

p53 protein MMAH DO-7 1 : 400 60 Nu 5

p21WAF1/Cip1 protein MMAH SX118 1 : 25 60 Nu 5

p27Kip1 protein MMAH SX53G8 1 : 50 60 Nu 5

Cyclin D1 MRAH EP12 1 : 500 60 Nu 10

Bcl-2 oncoprotein MMAH 124 1 : 800 60 Ct 5

E-cadherin MMAH NCH-38 1 : 50 60 M 10

CD44 MMAH DF1485 1 : 50 60 M 30

Cytokeratin 7 MMAH OV-TL 12/30 1 : 800 60 Ct 5

Cytokeratin 19 MMAH RCK108 1 : 200 60 Ct 5

Cytokeratin 20 MMAH Ks 20.8 1 : 200 60 Ct 5

CDX2 MMAH DAK-CDX2 1 : 50 60 Nu 5

Cytokeratin 5/6 MMAH D5/16 B4 1 : 100 60 Ct 5

Cytokeratin, HMW MMAH 34βE12 1 : 400 60 Ct 5

p63 protein MMAH DAK-p63 1 : 200 60 Nu 10

Chromogranin A MMAH DAK-A3 1 : 1000 60 Gra 20

CD56 MMAH 123C3 1 : 100 60 M 20

Vimentin MM V9 1 : 200 60 Ct 10

CD34 class II MMAH QBEnd10 1 : 1 30 M None

COX-2 MMAH CX-294 1 : 200 60 Ct 5
min – minutes; CD – cluster of differentiation; HMW – high molecular weight; COX-2 – cyclooxygenase 2; MMAH –  monoclonal mouse antibody against human 
antigen; MRAH – monoclonal rabbit antibody against human antigen; MM – monoclonal mouse antibody; Nu – nuclear; Ct – cytoplasmic; M –  membranous;  
Gra – granular cytoplasmic
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the median value was 56.5 years (IQR = 16). The 
study group was characterised by a female predom-
inance (Table II). The clinical data, as well as the 
morphological tumour profile, including the local 
tumour spread (T), presence of metastases in region-
al lymph nodes (N) and distant organs (M), tumour 
grade (G) and resection line status (R) by patholo-

gy findings (pTNMGR), stage and the frequency of 
such manifestations of invasive growth as vascular, 
perineural and lymphatic invasion, are represented 
in Table II. The mean tumour size ± SD was 3.9 
±3.2 cm (range, 1.2-12.5) and the median value 
was 2.9 cm (IQR = 4.3). The mean LN count ±SD 
was 6.2 ±10.0 (range, 1-33) and the median was 1.5 

Table II. Clinical and morphological profile of pancreatic neuroendocrine neoplasms

Variable Count Propor-
tion, %

95% CI 

Gender
Female 12/16 75.0 50.5-89.8
Male 4/16 25.0 10.2-49.5
Tumour localisation
Head of the pancreas 4/16 25.0 10.2-49.5
Pancreatic body 4/16 25.0 10.2-49.5
Tail of the pancreas 4/16 25.0 10.2-49.5
Wide involvement  
of the body and tail 

4/16 25.0 10.2-49.5

Surgical treatment
Pancreatoduodenec-
tomy 

2/16 12.5 3.5-36.0

Total pancreatectomy 1/16 6.3 1.1-28.3
Distal pancreatectomy 7/16 43.7 23.1-66.8
Tumour enucleation 6/16 37.5 18.5-61.4
Non-anatomic liver 
resection for metastases

2/16 12.5 3.5-36.0

Tumour size
> 2 cm 9/16 56.3 33.2-76.9
≤ 2 cm 7/16 43.7 23.1-66.8
pT characteristics
pT1 4/16 25.0 10.2-49.5
pT2 6/16 37.5 18.5-61.4
pT3 6 /16 37.5 18.5-61.4
The invaded structure in pT3 cases 
Peripancreatic fat tissue 5/6 83.3 43.7-97.0
Duodenum 2/6 33.3 9.7-70.0
Ampulla of Vater or 
sphincter of Oddi

1/6 16.7 3.0-56.4

Stomach and spleen 1/6 16.7 3.0-56.4
pN characteristics 
pN0 8/10 80.0 49.0-94.3
pN1 2/10 20.0 5.7-51.0
pM characteristics 
pM0 14/16 87.5 64.0-96.5
pM1 2*/16 12.5 3.5-36.0
Resection margins
Negative 8/11 72.7 43.4-90.3
Positive 3/11 27.3 9.8-56.6

Location of the invaded resection margin 
Pancreatic transection 
margin

2/3 66.7 20.8-93.9

Circumferential  
resection margin

1/3 33.3 6.2-79.2

Transection margin  
of stomach

1/3 33.3 6.2-79.2

Stage
IA 2/10 20.0 5.7-51.0
IB 3/10 30.0 10.8-60.3
IIA 2/10 20.0 5.7-51.0
IIB 1/10 10.0 1.8-40.4
IV 2/10 20.0 5.7-51.0
Invasive growth
Vascular invasion 8/16 50.0 28.0-72.0
Perineural invasion 2/16 12.5 3.5-36.0
Intraneural invasion 0/16 0.0 0.0-22.7
Lymphatic invasion 2/16 12.5 3.5-36.0
Tumour grade (WHO 2004)
Well differentiated  
endocrine tumour,  
benign behaviour

1/16 6.3 1.1-28.3

Well differentiated  
endocrine tumour,  
unclear behaviour

9/16 56.3 33.2-76.9

Well differentiated  
endocrine carcinoma

5/16 31.1 14.2-55.6

Poorly differentiated 
endocrine carcinoma

1/16 6.3 1.1-28.3

Tumour grade (WHO 2010)
Neuroendocrine  
neoplasm, grade 1

8/16 50.0 25.5-74.5

Neuroendocrine  
neoplasm, grade 2

8/16 50.0 25.5-74.5

Neuroendocrine  
carcinoma, grade 3 

0/16 0.0 0.0-22.7

* Both metastases were located in liver.
CI – confidence interval; pT1 – tumour limited to the pancreas, 2 cm or less in greatest dimension; pT2 – tumour limited to the pancreas, more than 2 cm in greatest 
dimension; pT3 – tumour extends beyond the pancreas but without involvement of the coeliac axis or the superior mesenteric artery; pN0 – no regional lymph node 
metastasis; pN1 – metastasis present in at least one regional lymph node; pM0 – distant metastases are absent; pM1 – distant metastases are present by pathology 
examination; WHO – World Health Organization

Variable Count Propor-
tion, %

95% CI 
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(IQR = 6) LN. Mitoses were found in 62.5% (95% 
CI: 38.6–81.5) of the cases, ranging in number from 
1 to 13 per 10 HPFs. The mean mitotic count ± SD 
reached 2.5 ±3.6 (range, 0-13), and the median val-
ue was 1.0 (IQR = 3.8) mitoses per 10 HPFs.

Immunohistochemical profile 

The expression of immunohistochemical markers 
was assessed in the PNENs and non-neoplastic islets 
of the pancreas (Table III). Significant up-regulation 
of Ki-67, CK19, p63, chromogranin A, vimentin 
and COX-2 expression was disclosed in the PNENs. 
The tumours invariably showed proliferative activity, 
in contrast to the pancreatic islets. Expression of ab-
errant p53 protein was uncommon. All p53 positive 
cases were well-differentiated PNENs with unclear 
behaviour (by WHO 2004 classification), pT1-2, mea-
suring 1.2-3.0 cm. Using the WHO grade 2010, both 
G1 and G2 tumours were found in the p53 positive 
group. The levels of p21 and p27 proteins, as well as 
cyclin D1, did not differ among normal and neoplastic 

neuroendocrine tissues. Both target tissues lacked any 
expression of anti-apoptotic protein Bcl-2, intestinal 
markers CK20 and CDX2, and two squamous mark-
ers, CK5/6 and CK34βE12. Epithelial-mesenchymal 
transition (EMT) by vimentin expression was evident 
in a  significant fraction of PNENs, contrasting with 
constantly negative islets. COX-2 positive cells also 
were found only in tumour tissue in low mean number 
(Table III). In addition, PNENs were characterised by 
marked IHC heterogeneity (Table IV).

The associations between the studied variables

The statistically significant associations between 
morphological and molecular variables are shown in 
Table V. In addition, CK19 was significantly up-reg-
ulated in PNENs having higher pT (p = 0.018) with 
significant differences between pT1 and pT3 (p = 
0.022), as well as between pT2 and pT3 (p = 0.004). 
No associations with clinical, morphological or IHC 
findings were found regarding p27 expression. 

Fig. 1. Diagnostic neuroendocrine features and cell cycle regulation in pancreatic neuroendocrine neoplasms (PNENs).  
A) Chromogranin A, immunoperoxidase (IP), original magnification 400×. B) Proliferation activity (by Ki-67), IP, orig-
inal magnification 400×. C) Nuclear expression of p27, IP, original magnification 100×. D) Cyclin D1, IP, original 
magnification 400×

A B

C D

Chromogranin A, 400× Ki-67, 400×

Cyclin D1, 400×p27, 100×
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Variable PNENs Islets

Ki-67 p < 0.001*
Evaluated cases 16 16
F of any level of  
expression, % [95% CI]

100  
[79.6-100]

0 
[0.0-20.4]

Range of Ki-67  
expressing cells, %

1-12 0

Mean of Ki-67 expressing 
cells ±SD, %

3.4 ±3.4; 0 ±0

Median of Ki-67  
expressing cells, %; IQR

2.0; 3.0 0

p53 p = 0.285*
Evaluated cases 15 15
F of any level of  
expression, % [95% CI]

26.7  
[10.9-52.0]

13.3  
[3.7-37.9]

Range of p53 expressing 
cells, %

2-58 1-8

Mean of p53 expressing 
cells ±SD, %

34.5 ±26.1 4.5 ±4.9

Median of p53 expressing 
cells, %; IQR

39.0; 49.0 4.5; 3.5

F of positive status, % 
[95% CI]

20.0  
[7.1-45.2]

6.7  
[1.2-29.8]

p21 p = 0.242*
Evaluated cases 14 13
F of any level of  
expression, % [95% CI]

71.4  
[45.4-88.3]

38.5  
[17.7-64.5]

Range of p21 expressing 
cells, %

4-30 1-23

Mean of p21 expressing 
cells ±SD, %

8.1 ±9.5 11.2 ±9.0

Median of p21 expressing 
cells, %; IQR

3.5; 12.5 8.0; 17.0

F of positive status, % 
[95% CI]

28.6  
[11.7-54.7]

30.8  
[12.7-57.6]

p27 p = 0.274*
Evaluated cases 14 13
F of any level of  
expression, % [95% CI]

100  
[78.5-100]

100  
[77.2-100]

Range of p27 expressing 
cells, %

16-98 38-99 

Mean of p27 expressing 
cells ±SD, %

62.6 ±27.7 75.3 ±17.9

Median of p27 expressing 
cells, %; IQR

66.5; 49.0 79.0; 23.0

F of positive status, % 
[95% CI]

100  
[78.5-100]

100  
[77.2-100]

Cyclin D1 p = 0.935*
Evaluated cases 12 13
F of any level of  
expression, % [95% CI]

75.0  
[46.8-91.1]

84.6  
[57.8-95.7]

Range of cyclin D1  
expressing cells, %

2-90 1-39

Mean of cyclin D1  
expressing cells ±SD, %

30.9 ±32.3 20.4 ±13.9

Variable PNENs Islets

Median of cyclin D1  
expressing cells, %; IQR

25.0; 57.0 23.0; 31.0

F of positive status, % 
[95% CI]

41.7  
[19.3-68.1]

61.5  
[35.5-82.3]

E-cadherin p = 0.278*
Evaluated cases 14 14
F of any level of  
expression, % [95% CI]

92.9  
[68.5-98.7]

64.3  
[38.8-83.7]

Range of E-cadherin  
expressing cells, %

5-95 8-96

Mean of E-cadherin  
expressing cells ±SD, %

49.6 ±34.7 54.9 ±27.2

Median of E-cadherin  
expressing cells, %; IQR

54.0; 76.0 56.0; 42.0

F of positive status, % 
[95% CI]

71.4  
[45.4-88.3]

57.1  
[32.6-78.6]

CD44 p = 0.922*
Evaluated cases 14 13
F of any level of  
expression, % [95% CI]

57.1  
[32.6-78.6]

92.3  
[66.7-98.6]

Range of CD44  
expressing cells, %

14-98 2-35

Mean of CD44 expressing 
cells ±SD, %

48.8 ±33.6 13.8 ±10.7

Median of CD44  
expressing cells, %; IQR

43.0; 67.0 10.5; 19.0

F of positive status, % 
[95% CI]

35.7  
[16.3-61.2]

7.7  
[1.4-33.3]

CK7 p = 0.165*
Evaluated cases 14 13
F of any level of  
expression, % [95% CI]

14.3  
[4.0-39.9]

0 
[0.0-22.8]

Range of CK 7 expressing 
cells, %

13-18 0

Mean of CK 7 expressing 
cells ±SD, %

15.5 ±3.5; 
13-18

0 ±0

Median of CK 7  
expressing cells, %; IQR

15.5; 2.5 0

F of positive status, % 
[95% CI]

14.3  
[4.0-39.9]

0.0 
[0.0-22.8]

CK19 p = 0.006*
Evaluated cases 14 15
F of any level of  
expression, % [95% CI]

42.9  
[21.4-67.4]

0  
[0.0-20.4]

Range of CK 19  
expressing cells, %

1-92 0

Mean of CK 19  
expressing cells ±SD, %

22.8 ±34.5 0 ±0

Median of CK 19  
expressing cells, %; IQR

10.0; 33.0 0

F of positive status, % 
[95% CI]

28.6 
[11.7-54.7]

0.0  
[0.0-20.4]

Table III. Immunophenotype of pancreatic neuroendocrine neoplasms and islets
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 Discussion

Pancreatic neuroendocrine neoplasms are infre-
quent tumours constituting 1.3-5% of pancreatic 
malignancies [31, 32]. However, they have recently 
attracted significant attention due to growing in-
cidence, in parallel with other neuroendocrine neo-
plasms (NENs). As reported by the Surveillance, 
Epidemiology and End Results (SEER) registry 
of the National Cancer Institute, the incidence of  
gastroenteropancreatic NENs has increased from 
1 (1973-1977) to 3.65 (2003-2007) per 100,000. In 
the same time period, the incidence of PNENs in-

creased from 0.17 to 0.43 per 100,000 [33]. PNENs 
are associated with significantly better outcomes 
than is pancreatic ductal adenocarcinoma (PDAC). 
The median survival of surgically treated non-func-
tional PNENs was 60.4 months and the mean sur-
vival of PNEN patients reached 225.3 months [34, 
35]. In contrast, the median survival of surgically 
treated PDAC was 22.8 months [36]. The five-
year survival of surgically treated PNEN patients 
is 84.4%, while of PDAC patients, it is 19-24% 
[37, 38]. However, the clinical course of PNENs is 
still difficult to predict [39]. Although knowledge 
about PNEN pathogenesis and biological potential 

Table III. Immunophenotype of pancreatic neuroendocrine neoplasms and islets

Variable PNENs Islets Variable PNENs Islets

p63 p = 0.034*
Evaluated cases 14 14
F of any level of  
expression, % [95% CI]

28.6  
[11.7-54.7]

0.0  
[0.0-21.5]

Range of p63 expressing 
cells, %

2–7 0

Mean of p63 expressing 
cells ±SD, %

3.3 ±2.5 0 ±0

Median of p63 expressing 
cells, %; IQR

2.0; 4.0 0

F of positive status, % 
[95% CI]

0.0  
[0.0-21.5]

0.0  
[0.0-21.5]

Chromogranin A p = 0.042*
Evaluated cases 16 16
F of any level of expression, 
% [95% CI]

100  
[79.6-100]

100  
[79.6-100]

Range of chromogranin 
A expressing cells, %

93-100 98-100

Mean of chromogranin 
A expressing cells ±SD, %

97.9 ±2.2 99.4 ±0.7

Median of chromogranin 
A expressing cells, %; IQR

98.0; 4.0 100; 1.0

F of positive status, % 
[95% CI]

100  
[79.6-100]

100  
[79.6-100]

CD56 p = 0.428*
Evaluated cases 16 16
F of any level of  
expression, % [95% CI]

100  
[78.5-100]

100  
[78.5-100]

Range of CD56  
expressing cells, %

89-100 89-100

Mean of CD56 expressing 
cells ±SD, %

97.7 ±3.2 99.1 ±0.8

Median of CD56 express-
ing cells, %; IQR

98.5; 3.3 99.0; 2.0

F of positive status, % 
[95% CI]

100  
[78.5-100]

100  
[78.5-100]

Vimentin p = 0.006*
Evaluated cases 14 15
F of any level of  
expression, % [95% CI]

42.9  
[21.4-67.4]

0.0  
[0.0-20.4]

Range of vimentin express-
ing cells, %

10–82 0

Mean of vimentin  
expressing cells ±SD, %

37.7 ±28.2 0 ±0

Median of vimentin  
expressing cells, %; IQR

28.0; 53.0 0

F of positive status, % 
[95% CI]

35.7  
[16.3-61.2]

0.0  
[0.0-20.4]

COX-2 p = 0.016*
Evaluated cases 14 13
F of any level of  
expression, % [95% CI]

35.7  
[16.3-61.2]

0 
[0.0-22.8]

Range of COX-2  
expressing cells, %

3-16 0

Mean of COX-2  
expressing cells ±SD, %

6.2 ±5.5 0 ±0

Median of COX-2  
expressing cells, %; IQR

4.0; 8.0 0

F of positive status, % 
[95% CI]

7.1  
[1.3-31.5]

0.0  
[0.0-22.8]

Microvascular density 
(MVD)

p = 0.497*

Evaluated cases 16 16
Range of MVD, vessels per 
HPF

21-128 28-168

Mean MVD ±SD, vessels 
per HPF

70.4 ±24.2 79.5 ±31.1 

Median MVD, vessels per 
HPF; IQR

75.5; 43 81.0; 45

*p value for the mean by Mann-Whitney U test
PNEN – pancreatic neuroendocrine neoplasm; F – frequency; CI – confidence interval; SD – standard deviation; IQR – interquartile range; CD – cluster of differen-
tiation; CK – cytokeratin; COX-2 – cyclooxygenase 2; MVD – microvascular density; HPF – high-power field



183

Pancreatic neuroendocrine neoplasms 

deepened during the preceding years, the molecular 
mechanisms responsible for tumour progression and 
metastasis still remain incompletely understood. 
Molecular markers are increasingly used to pre-
dict patient outcome, and immunohistochemistry 
has been found to be an appropriate, visually con-
trollable, economically effective and fast surrogate 

method for evaluating the molecular aberrations on 
the protein level [40]. Recently, the World Health 
Organization included the Ki-67 level in the PNEN 
grading criteria, resulting in improved accuracy of 
the grading system [4]. Deeper understanding of 
the molecular pathogenesis of PNENs could help to 
sharpen the grading system.

Table IV. Immunohistochemical heterogeneity in pancreatic neuroendocrine neoplasms

Antigen Frequency of heterogeneity Range of positive cells per 
HPF, %Relative amount of cases, % 95% confidence interval, %

p27 14.3 4.0-39.9 0-77

COX-2 7.1 1.3-31.5 0-37

CK7 14.3 4.0-39.9 0-34

CK19 28.6 11.7-54.7 0-63

E-cadherin 50.0 26.8-73.2 0-100

CD44 28.6 11.7-54.7 0-61

Vimentin 28.6 11.7-54.7 0-76
HPF – high-power field; COX-2 – cyclooxygenase-2; CK – cytokeratin; CD – cluster of differentiation 

Independent 
variable

Dependent  
variable

p value

Tumour size pM 0.025
Vascular invasion 0.045

E-cadherin 0.052*
CK19 0.054*

pT Grade 2004 0.005
Vascular invasion 0.005

E-cadherin 0.047
CK19 0.018

pN Age 0.037
pM Size 0.025

Grade 2004 0.034
Mitotic count 0.022

pR 0.011
pR pM 0.011

Mitotic count 0.017
CK19 0.025

Grade 2004 0.051*
Grade 2004 pT 0.005

pM 0.034
Vascular invasion 0.021

CK19 0.050
pR 0.051*

Grade 2010 Vascular invasion 0.046
Ki-67 0.002

Vascular  
invasion

Size 0.012

pT 0.005
Grade 2004 0.021
Grade 2010 0.046

Mitotic count 0.023
p53 0.038**

E-cadherin 0.003**
CK19 0.020

p63 0.024

Microvascular density 0.035**

Perineural 
invasion

p53 0.038**

E-cadherin 0.003**

CK19 0.026

COX-2 0.011

Lymphatic 
invasion

CK19 0.043

COX-2 0.043

Mitotic count pM 0.022

pR 0.017

Vascular invasion 0.023

Table V. Morphological and molecular associations in pancreatic neuroendocrine neoplasms

* statistically insignificant trend
** negative association
pT – the local tumour spread; pN – regional lymph node status regarding the presence of metastases; pM – presence or absence of distant metastases [19]; pR – resection line 
status (R) by pathology findings [16, 17]; grade 2004 – tumour grade by the World Health Organization (WHO) classification issued on 2004 [18]; grade 2010 – tumour 
grade by the World Health Organization (WHO) classification issued on 2010 [1]; CK – cytokeratin; COX-2 – cyclooxygenase 2

Independent 
variable

Dependent  
variable

p value
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Clinical data

The clinical profile was obtained to characterise 
the general conformity of the study group to the 

known PNENs characteristics. The observed mean 
age of PNEN patients, 59.4 years, was slightly high-
er than in other studies (48-53 years), possibly due to 
having an adult group, in contrast with the presence 

A B

C

 E

D

F

Fig. 2. Cell adhesion, mesenchymal differentiation and COX-2 expression in pancreatic neuroendocrine tumours (PNENs) 
and islets. A) Intense membranous expression of E-cadherin in an islet, immunoperoxidase (IP), original magnification 
400×. B) Loss of E-cadherin in PNEN, IP, original magnification 100×. C) Lack of CK19 in an islet. Note the intense 
cytoplasmic reactivity in small ducts, IP, original magnification 400×. D) Heterogeneous strong cytoplasmic expression 
of CK19 in PNEN, IP, original magnification 400×. E) Strong cytoplasmic expression of vimentin in PNEN, IP, original 
magnification 400×. F) Heterogeneous cytoplasmic expression of COX-2 in PNEN, IP, original magnification 400×

E-cadherin, 400×

CK 19, 400×

E-cadherin, 100×

Cyclin D1, 100×

Vimentin, 400× COX-2, 400×



185

Pancreatic neuroendocrine neoplasms 

of adolescent patients in other studies that showed an 
age range of 14-78 years [34, 41, 42]. Although in 
this study, women accounted for 75.0% of patients, 
PNEN incidence is considered equal in both sexes. 
The observed difference is probably attributable to 
the relatively small size of the study group [34, 41]. 
Regarding the tumour location, in this and other sim-
ilar studies, PNENs were smoothly distributed with-
in the anatomic compartments of the pancreas [41]. 
The surgical treatment in the present study generally 
corresponded to the accepted standards [41, 43, 44], 
providing a reasonable cure to the patient while also 
yielding representative tissue material.

Tumour size

Within the study, PNEN size ranged from 1.2-
12.5 cm, in accordance with the published results 
[41, 45-47]. Prognostic value has been attributed 
to the size of PNEN. The five-year survival rate was 
statistically significantly better (100%) in patients 
having tumour ≤ 1.5 cm, in contrast to 86%, 71%, 
83% and 48% survival rates regarding PNENs sized 
1.6-2.0 cm, 2.1-3.0 cm, 3.1-5.0 cm and larger than 
5.0 cm. Consequently, observation has even been 
suggested as the approach for patients having a tu-
mour smaller than 1.5 cm. However, risk of distant 
metastases increases sharply with a larger PNEN size 
[48]. This is in agreement with the present study 
showing an association between tumour size, pM1 
(p = 0.025), and invasion in the blood vessels (p =  
= 0.045), the precursor lesion of distant metastases. 
In addition, larger PNEN size has been found to cor-
relate with LN metastases [48]. Considering the mo-
lecular basis of PNEN growth, the tumour size in the 
present study showed an association with Ki-67 (p =  
= 0.022) and a  trend towards association with vi-
mentin expression (p = 0.051). PNENs larger than 
2 cm showed a trend towards association with E-cad-
herin (p = 0.052) and CK19 (p = 0.054) levels. 
Thus, proliferation, EMT and loss of cell adhesion are 
among the pathways of increasing tumour mass, par-
alleling the metastatic spread.

pTNM

The pT frequency distribution between pT1 
(25.0%), pT2 (37.5%) and pT3 (37.5%) was even. 
A  similar occurrence of pT3 tumours (32.4%) has 
been reported [45]. Significant survival differences 
were previously reported between pT1-2 vs. pT3-4, 
as well as between T3 and T4 [49]. It could be attrib-
utable to the tumour invasion in extrapancreatic tis-
sues and large arteries in the cases of pT3 and pT4. In 
our study, there was a significant association between 
pT, tumour grade 2004 (p = 0.005) and vascular inva-
sion (p = 0.005), explaining the association between 
pT and prognosis through common mechanisms of 

anaplasia and invasive tumour properties. pN1 was 
found in 20.0% of PNEN, in accordance with other 
observations [41, 45-47, 50] and was strongly pre-
dicted by older age. Age exceeding 60 years has been 
shown to be associated with lower survival, even in 
patients with low-grade (G1) gastroenteropancreatic 
PNENs [51]. Similarly, non-functioning PNEN pa-
tients older than 55 years had a worse survival [39]. 
Distant metastases were previously reported in 10.8- 
27.0% of surgically treated PNENs and were found 
in 12.5% of patients in the present study [12, 49, 
52]. The pM1 was associated with higher grade 2004 
(p = 0.034) and increased mitotic count (p = 0.022), 
accentuating cell proliferation.

Resection margins

In order to assess the completeness of surgical 
treatment, as well as the recurrence risk, surgical 
RM must be examined carefully. In PNENs, R0 can 
be reached in 68-87.1% of patients [47, 53]. R0 
PNENs still recur in 23.1% of patients, leading to 
death in 11.1% [46]. However, the five-year surviv-
al rate in R0 cases is statistically significantly higher 
than in the R1: 91.2% vs. 55.0%, respectively [47].  
In the present study, pR1 status in PNENs was asso
ciated with mitotic count (p = 0.017) and had a trend 
towards the association with the grade 2004 (p =  
= 0.051). Although shorter survival has been report-
ed in patients with perineural invasion, no association 
between perineural growth and pR1 has been found 
in the present study or by other authors [12, 52] that 
can be explained by limited, mainly intratumoural 
perineural spread of PNEN, contrasting with pancre-
atic ductal adenocarcinoma [54].

Ki-67

Proliferation is a  characteristic general tumour 
feature that is also essential in PNEN grading [4]. 
The observed invariable Ki-67 expression with a me-
dian positive cell count of 2% was in agreement with 
other authors [41, 49]. Regarding elevated Ki-67 ex-
pression in PNEN, the most convincing correlation 
is described with more frequent metastatic spread 
[55]. In this study, there was strong correlation with 
tumour stage (rs = 0.688; p = 0.028). Along with 
a  higher ability to cell division, PNENs acquired 
CK19 expression (p = 0.033) and EMT by vimen-
tin expression (p = 0.045). These markers, similarly 
to Ki-67, were not observed in islets. Thus, the tri-
ad of Ki-67, CK19 and vimentin up-regulation can 
be used as a tool to identify aggressive behaviour in 
PNENs. Notably, there was a trend towards negative 
correlation (p = 0.051) between Ki-67 and stem cell 
phenotype by CD44 expression, consistent with the 
stem cell nature of slow, steady renewal.
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p53

The “genome guard”, p53 protein is normally 
found within cells in small quantities due to a short 
half-life. TP53 mutations can result in the synthesis 
of aberrant p53 proteins that have longer half-lives 
and thus accumulate in cells and can be detected by 
IHC. The TP53 mutation analyses and p53 IHC 
provide two different levels of molecular examination 
lacking correlation between gene mutations and ab-
errant p53 protein expression [56]. The p53 protein 
expression in PNENs was infrequent in accordance to 
the previously reported rare occurrence of TP53 mu-
tations and IHC expression of p53 protein in PNENs 
[57]. Occasionally, a higher frequency (49%) of p53 
protein expression has been described in gastroen-
teropancreatic NENs due to high expression in gas-
tric neuroendocrine neoplasms [58]. Although p53 
expression has been attributed to malignant PNENs 
[5], in the present study, it was observed in well-dif-
ferentiated PNENs with unclear behaviour. Hypo-
thetically, these tumours have a malignant nature but 
do not yet demonstrate invasive growth, similarly to 
PanIN-3 lesion in pancreatic ductal adenocarcinoma. 
Using the WHO 2010 classification, p53 expression 
was not limited to any particular grade in accordance 
with previous publications [58]. In PNENs, no as-
sociation has been observed between immunohis-
tochemically detected p53 protein expression and 
survival [59]. It has been hypothesised that p53 is 
usually not directly altered in gastroenteropancre-
atic NENs, but the other molecules involved in the 
whole p53 pathway are inactivated. Accordingly, we 
did not observe significant differences regarding p53 
expression in PNENs and benign endocrine precur-
sors. Analogous considerations are expressed regard-
ing retinoblastoma tumour suppressor protein (Rb) 
pathway [60] favouring cyclin D1 as one of the key 
factors for cell cycle dysregulation in NENs, in con-
trast to epithelial carcinomas [61]. 

p21

The p21 protein is a  cell cycle inhibitor, which 
controls cell cycle progression, apoptosis and tran-
scription. It has a dual function, including prolifer-
ation inhibition and positive modulation, and can 
play anti- and pro-apoptotic function, depending on 
the nature of the apoptotic stimulus [62]. Although 
strong expression of p21 in gastroenteropancreatic 
neuroendocrine neoplasms has been previously asso-
ciated with poor outcome [6], in our study, positive 
p21 expression showed limited correlations, possibly 
due to this duality. In vitro, induction of p21 has been 
associated with aspirin-induced inhibition of neuro-
endocrine tumour cell viability [63], further empha-
sising the controversies in the interpretation of p21 
presence. Regarding other endocrine neoplasms, no 

difference of p21 levels in thyroid follicular adenomas 
and carcinomas has been found [64]. In the present 
study, a  significant correlation with E-cadherin was 
observed, providing evidence for the link between 
cell cycle regulation and cell adhesion and invasion. 

p27

The p27 is a  cyclin-cyclin dependent kinase in-
hibitor and tumour suppressor. It inhibits cell cycle 
progression, mediating G1 arrest [7]. In cancer, IHC 
expression of p27 is decreased due to impaired syn-
thesis or accelerated degradation of the relevant pro-
tein [65]. In a mouse model, lack of p27 led to neu-
roendocrine hyperplasia. However, contact inhibition 
of cell proliferation remained unchanged, signifying 
necessity for other molecular alterations to complete 
the tumorigenesis [66]. Consequently, we did not 
observe significant differences between p27 levels in 
PNENs and islets. Alternatively, p27 alterations can 
be late event in NEN development, related to high 
tumour grade. Loss of p27 in gastroenteropancreat-
ic NENs has been associated with worse prognosis 
in some [7, 67], but not all [6], studies. Disappear-
ance of p27 was characteristic in poorly differentiated 
neuroendocrine carcinomas and metastatic well-dif-
ferentiated endocrine carcinomas (by 2004 WHO 
classification), as Grabowski et al. [67] reported. Such 
tumours were infrequent in the present study group. 
This could explain why no morphological associa-
tions were identified in the present study, contrasting 
with Kim et al. [7].

Cyclin D1

The transcriptional regulator cyclin D1 forms 
a complex with cyclin dependent kinases 4 and 6 that 
phosphorylate and thus inactivate the tumour sup-
pressor protein Rb, resulting in the cell cycle progress 
from the G1 to S phase. It is among the main prolif-
eration control mechanisms [61]. In malignant cells, 
the level of cyclin D1 can increase due to gene rear-
rangement, amplification, transcriptional up-regula-
tion [61] or affected degradation [68]. Rb gene is in-
frequently affected in NENs, favouring involvement 
of other molecules within the Rb pathway [69]. 

In the present study, there was no significant dif-
ference between the cyclin D1 expression in islets and 
PNENs. Interestingly, in the mouse model, induced 
cyclin D1 expression in pancreatic β-cells resulted in 
islet hyperplasia that was not associated with hypo-
glycaemia, diabetes or tumour [70]. In turn, the rele-
vance of cyclin D1 to the neuroendocrine oncogenesis 
was emphasised by the interaction with beta-catenin, 
an important component of the E-cadherin pathway 
[71]. Extracellular-regulated kinase ERK and p38/
mitogen-activated protein kinase MAPK pathways 
are also involved both in the regulation of cyclin D1 
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levels [8] and the down-regulation of E-cadherin 
[72]. Cyclin D accumulation can be the downstream 
effect of beta-catenin accumulation occurring within 
E-cadherin/beta-catenin function loss [60]. Alterna-
tively, up-regulation of cyclin D1 is considered an 
early event in the development of neuroendocrine 
neoplasms [61]. 

In PNENs, cyclin D1 possibly should be anal-
ysed in conjunction with other proteins to distin-
guish between hyperplastic and neoplastic pathways. 
Such complex analysis could include E-cadherin, 
but should not be limited to it. In the INK4a-ART 
tumour suppressive network, p21 and p27 loss can 
have a  similar effect as cyclin D1 hyperexpression 
[60]. Hypothetically, E-cadherin expression could 
have a higher prognostic value, serving as the lim-
iting measure of molecular deregulation in PNENs, 
while cyclin D1 expression [73] would be too ubiqui-
tous for prognostic estimates. Other research groups 
have also failed to identify an association between cy-
clin D1 expression and survival or clinical and patho-
logical variables [58]. 

Bcl-2

Bcl-2 is an anti-apoptotic protein. Translocation 
in the BCL2 gene yields increased expression of the 
Bcl-2 protein [56]. It is considered that PNEN de-
velopment necessitates both derangement of cell pro-
liferation and apoptosis [60]. The estimates of Bcl-2 
expression are contradictory, ranging from relatively 
frequent (53.3-53.6%) to no reactivity in PNENs [5, 
74]. The hypothetical explanation of this controversy 
is as follows. In pancreatic carcinoma, over-expres-
sion of another anti-apoptotic protein belonging to 
the Bcl-2 family – Bcl-xL is more common and has 
a  greater relevance [75]. Thus, cross-reactivity can 
be responsible for most of the positive cases, but was 
avoided in the present study. It must be emphasised 
that positive controls (including internal positive 
control of lymphocytes) were invariably performed 
and were reactive. 

E-cadherin

E-cadherin is an epithelial transmembrane gly-
coprotein supporting epithelial layer integrity and 
polarity [56]. Loss of E-cadherin or displacement of 
it, apart from the cell membrane, has been observed 
in advanced malignant tumours. The resulting func-
tional derangement of E-cadherin weakens cell-cell 
adhesion and facilitates cell migration and invasion. 
Lower E-cadherin levels are associated with a high-
er incidence of cancer metastasis [76]. In the present 
study, we confirmed a significant association between 
E-cadherin loss and advanced tumours, characterised 
by a higher pT (p = 0.011) in parallel with previous-
ly reported association between larger tumour size 

and the loss of E-cadherin in pancreatic and pulmo-
nary NENs [56, 77]. Both in pulmonary neuroen-
docrine tumours and in PNENs, reduced E-cadherin 
expression or displacement of this protein from the 
cell membrane to the cytoplasm has been associated 
with the presence of LN metastases [56, 77]. Loss 
of E-cadherin in PNENs is characterised by more 
frequent liver metastases [56]. In the present study, 
decreased E-cadherin levels were associated with 
more frequent vascular and perineural invasion (both  
p = 0.003), showing a higher spreading capacity of 
the E-cadherin-losing tumour. E-cadherin signifi-
cantly correlated with p53 status (p = 0.011). Wild 
type p53 proteins can suppress EMT that involves 
up-regulation of vimentin and loss of E-cadherin; 
recently, the mechanism has been studied in regard 
to microRNA regulation. The miR-154-mediated 
mechanism has been shown in the prostate cancer 
cell line [78]. Here, we provide in vivo evidence of the 
p53 and E-cadherin relationship in PNENs. 

Molecularly, we also identified a significant asso-
ciation between E-cadherin and the cell cycle regu-
lator p21 (p = 0.046). In hepatocellular carcinoma, 
miR-148b was recently shown to regulate p21 lev-
els, as well as to influence the Wnt pathway, final-
ly up-regulating E-cadherin expression [79]. Here, 
we provide in vivo evidence of analogous p21 and 
E-cadherin association in PNENs. E-cadherin levels 
in PNENs showed also a strong positive correlation 
with angiogenesis, as reflected by MVD (p = 0.005). 
In turn, high vascularity is associated with a  lower 
NEN grade [80]. In the present study, decreased 
E-cadherin levels were associated with grade 2004  
(p = 0.007). Similarly, in pulmonary NENs, func-
tional derangement of E-cadherin complex was as-
sociated with a higher proliferation activity, the hall-
mark of PNEN grading [77].

CD44

CD44 is a transmembrane adhesion molecule that 
participates in the interaction between different cells 
or between cells and the matrix, as well as in cell 
migration [81]. It is also characteristic for stem-like 
cancer cells, representing self-renewing cells, able to 
promote clonogenicity, cell growth and migration, 
metastatic spread and resistance to chemotherapy 
[11, 27].

The identified trend towards a negative correlation 
between CD44 and Ki-67 in PNENs (p = 0.051) 
was typical for the slow, continuous regeneration 
predicted for stem cells. CD44 expression has been 
shown in mesenchymal stromal cells that were able 
to differentiate into islet cells [82]. In accordance 
with this, a  small subpopulation of CD44-positive 
cells was almost invariably evident in non-neoplastic 
islets in the present study. However, tissue stem cells 
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exhibit similarities with cancer stem cells, but also 
show differences [83].

In pulmonary carcinoids, low levels of CD44 
mRNA and absence of the CD44 protein are associ-
ated with a low 20-year survival [84]. In a combined 
group of pulmonary and gastrointestinal neuroen-
docrine neoplasms originally described as carcinoids, 
the patients with lymph node or distant metastasis 
lacked CD44 in the tumours significantly more fre-
quently [85]. Thus, the prognostic role of CD44 ex-
pression in NENs is different from the negative find-
ings in many carcinomas, including pancreatic ductal 
adenocarcinoma, gastric adenocarcinoma, clear cell 
renal carcinoma or non-small cell lung carcinoma, 
among others [11, 86-88]. In our study, there also 
was no association between CD44 and such mor-
phological parameters, such as high grade and stage, 
which are indicative of a poor prognosis. 

Thus, in neuroendocrine neoplasms, CD44 exhib-
its mainly tumour suppressor functions, promoting 
cell adhesion, limiting metastatic spread and activat-
ing apoptosis in accordance with the reported tum-
origenicity of CD44-null fibroblasts in nude mice or 
tumour apoptosis studies [84]. The dual functions of 
CD44 are pathogenetically important. In practice, 
pathologists must be aware of the diverse prognostic 
role of CD44 in tumours of different histogenesis.

Cytokeratins

Although few articles have been devoted to the 
prognostic value of CKs, the expression of CK19 has 
been associated with shorter survival in some [12, 13, 
52], but not all, studies [32, 39]. In the present study, 
CK19 was associated with aggressive characteristics, 
including higher pT (p = 0.011), stage (p = 0.025), 
grade 2004 (p = 0.002), invasive capacity confirmed 
by vascular (p = 0.020), lymphatic (p = 0.043) and 
perineural (p = 0.026) invasion, proliferative activity 
by mitotic count (p = 0.008) and Ki-67 (p = 0.033), 
EMT (p = 0.041) and suppressed angiogenesis (p =  
= 0.014). The findings are in accordance with pre-
vious studies reporting increased tumour size, higher 
mitotic activity, lymphatic, vascular and perineural 
invasion, higher grade and higher TNM parameters 
in CK19-expressing PNENs [13, 32]. Our findings 
suggest that CK19 confers increased plasticity to tu-
mour cells, facilitating local invasion and metastatic 
spread similar to pancreatic ductal adenocarcinoma, 
which typically expresses CK19 [89] and is known 
for its fulminant course. 

Alternative explanations for CK19 role exist as 
well. CK19 is present in benign pancreatic ducts 
[32]. As ductal epithelia can up-regulate the endo-
crine cells [90], self-stimulation can be provided by 
CK19-positive PNEN cells. Some authors have hy-
pothesised that PNENs develop from pluripotential 
ductal stem cells [91], analogous to the unitarian 

theory regarding colonic carcinoma and endocrine 
tumours [92]. This hypothesis is supported by the 
occasional coexistence of PNEN and intraductal 
papillary mucinous pancreatic neoplasms [93, 94]. 
If so, CK19 can be the precursor marker of pristine 
PNENs, retaining some features of the pluripotential 
primitive ancestor cell. This is in accordance with the 
embryonic development of the pancreas character-
ised by CK19 expression in the endocrine component 
during the early stages, while later it is retained in 
ducts, but absent from islets [13, 32]. The observed 
statistically significant (p = 0.006) up-regulation of 
CK19 in 28.6% of PNENs thus recapitulates early 
developmental stages. 

CK20 is absent from normal pancreatic islets [26, 
56]. Although CK20 expression in PNENs has been 
reported in up to 33% of cases [95], it was not ob-
served in the present study. The published data also 
vary widely – only 5% of gastroenteropancreatic tu-
mours expressed CK20 in Knosel et al. [96] study.

CDX2

CDX2 is a  caudal-related homeobox transcrip-
tion factor, expressed in the intestinal epithelium. It 
discloses intestinal differentiation, both in non-neo-
plastic or malignant cells. The labelling in pancreatic 
tissues is usually lighter and more variegated than 
in colorectal carcinoma [56]. Although expression 
of CDX2 has been reported in a  small fraction of 
PNENs [97, 98], it was absent both from PNENs 
and islets in the present study. 

Squamous differentiation

The endocrine pancreatic tissues and correspond-
ing tumours lacked CK5/6 and CK34βE12 proteins 
that were found in cells exhibiting squamous differ-
entiation [56]. To the best of our knowledge, there 
are no previously published reports evaluating the 
trend towards squamous differentiation in PNENs 
by p63 expression. In the present study, it was ob-
served in 28.6% of cases. Although the expression 
did not reach the cut-off level of 10% positive cells, 
the up-regulation was significant in contrast to 
non-neoplastic endocrine cells in the pancreatic islets 
(p = 0.034). Thus, association with tumorigenesis 
could be suspected rather than the squamous differ-
entiation. The pathogenetic role of p63 in a fraction 
of PNENs is further supported by the trend towards 
correlation with cell cycle regulator p21 (p = 0.056) 
and by the invasiveness of p63-expressing PNENs, as 
p63 expression was significantly higher in tumours 
that invaded blood vessels (p = 0.024). The asso-
ciation with p53 (p < 0.001) and E-cadherin (p =  
= 0.009) was also indirect evidence of aggressive 
features. Previously, expression of p63 was reported 
in pulmonary non-small cell neuroendocrine carcino-
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mas [99] and neuroendocrine carcinomas of the head 
and neck [100] in studies of diagnostic value. 

Vimentin

Vimentin is a  major mesenchymal intermediate 
filament, controlling cellular motility, signalling and 
directional migration [101]. Malignant pancreatic 
epithelial cells acquire vimentin and lose E-cadherin 
during EMT, resulting in tumour invasiveness, met-
astatic capacity, resistance to chemotherapy and the 
generation of cancer stem cells. Although EMT has 
been associated with cancer progression, it has also 
been attributed to fibrosis due to chronic inflamma-
tion. Fibrosis is associated with increased numbers of 
myofibroblasts arising from epithelial cells through 
EMT [102]. Since pancreatic islets lack fibrosis even in 
inflammation, EMT is absent from islets. In PNENs, 
vimentin was significantly up-regulated in compar-
ison with islets (p = 0.006), suggesting a  signifi-
cant role in neuroendocrine tumorigenesis. Vimentin 
also showed a positive correlation with CK19 (p =  
= 0.041), which is associated with increased invasive-
ness in PNENs. Thus, particularly aggressive PNEN 
could be characterised by an up-regulated triad, i.e., 
Ki-67, CK19 and vimentin. In pulmonary NENs, 
vimentin has been significantly associated with high-
er tumour grade [77]. Appendicular NENs, having 
favourable clinicopathological profiles, mostly lack 
vimentin [51].

Alternatively, vimentin could mark a separate mo-
lecular subtype of neuroendocrine neoplasms, as evi-
denced by relatively frequent occurrence and the re-
ported association with low biological potential [51]. 

The observed frequency of EMT in PNENs in this 
study is within the reported range (11–58%) in gas-
troenteropancreatic neuroendocrine neoplasms and/
or rectal carcinoids [51, 103]. Coexpression of vimen-
tin and neuroendocrine markers has also been report-
ed in selected peripheral and visceral glomus tumours 
that show clear cell morphology [104, 105], PNEN 
associated with tuberous sclerosis [106], and in 80% 
of renal NENs [107]. 

Microvascular density

Although rich vascularity is typical in NENs, the 
differences between these tumours and the precursors 
are less known. In the present study, PNENs retained 
the same MVD as islets. In an experimental mod-
el of digestive NENs, angiogenesis was associated 
with well-differentiated cell lines and tumours, and 
lacked correlations with tumour progression, as well 
as invasive and metastatic properties [80]. Analogous 
clinical observations have been published [108]. Low 
vascularity is characteristic for poorly differentiated 
neuroendocrine carcinomas [109] and can be quan-
tified by non-invasive xenon-inhalation computed 

tomography [110]. Pathogenetically, hypoxia-induc-
ible factors are associated with malignant progression 
of well-differentiated neuroendocrine tumours of the 
ileum [111]. 

COX-2 

COX-2 is the rate-limiting enzyme in the pro-
duction of prostaglandins from arachidonic acid. It 
is expressed in gastric, colorectal and pancreatic car-
cinomas [56], and has been associated with poor out-
come, whereas the risk of cancer mortality is reduced 
by long-term non-steroidal anti-inflammatory drug 
therapy. COX-2 selectively promotes the expression 
and activity of the neuroendocrine marker chromogr-
anin A, and therefore it is a promising research di-
rection in NENs [112]. COX-2 expression has been 
explored in neuroendocrine tumours, including stud-
ies of the biological potential and therapeutic pos-
sibilities. It was widely expressed in up to 82% of 
medullary thyroid carcinoma, showing statistically 
significant up-regulation in comparison with benign 
thyroid tissue [113]. In phaeochromocytoma, COX-
2 is associated with malignant behaviour and, along 
with lack of nm-23 and presence of galectin-3, can 
be applied to predict malignancy [114]. Immuno-
histochemical expression of the COX-2 protein has 
been identified in 54-75% of gastroenteropancreatic 
[115, 116] and 65% of pancreatic NENs [117]. In 
our study, we showed statistically significant up-reg-
ulation of COX-2 expression in PNENs, contrasting 
with invariably negative islets (p = 0.016) and pro-
viding in vivo evidence that COX-2 is involved in the 
pancreatic neuroendocrine tumorigenesis. 

The prognostic role of COX-2 in PNENs has been 
addressed in a few studies. COX-2 overexpression in 
gastroenteropancreatic NENs was significantly as-
sociated with poor survival. However, only 10/247 
NENs in this cohort originated in the pancreas [116]. 
In a cohort of mid-gut carcinoids comprising NENs 
of the distal duodenum, jejunum, ileum and prox-
imal part of the colon, a  higher COX-2 histoscore 
was significantly associated with worse survival with-
in the COX-2 positive group [118]. The correlation 
between COX-2 and proliferation activity by Ki-67 
could at least partially explain the negative prognos-
tic meaning of COX-2 [116]. COX-2 expression in 
gastroenteropancreatic NENs correlated significantly 
with grade, but not primary location [116]. In con-
trast, Bergmann et al. concluded that COX-2 ex-
pression was independent of the malignant potential 
of pancreatic endocrine tumours [3]. In the present 
study, COX-2 expressing PNENs more frequently 
invaded lymphatic vessels (p = 0.043), suggesting an 
undesirable course. The association between COX-2 
overexpression and lymphatic invasion in gastro-
enteropancreatic NENs was reported by Ince et al. 
[115] and Kim et al. [116]. Higher invasive capac-
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ity of COX-2-expressing PNEN represents a patho-
genetic mechanism for worse survival and is further 
substantiated by the observed association between 
COX-2 and the cytokeratin profile, influencing the 
tumour cell plasticity.

COX-2 inhibitors have been studied in regard of 
NEN treatment [3]. In vitro NEN studies have been 
encouraging, revealing the induction of apoptosis 
[119] and the potentiation of chemotherapy [120] 
in the medullary thyroid cancer cell line. Enhanced 
apoptosis has also been observed in PNEN cell lines 
[3]. The mechanisms of COX-2 inhibitor activity 
include reduction of the expression of multidrug re-
sistance 1 gene MDR1, resulting in lower levels of 
the corresponding transmembrane glycoprotein, 
that prevents intracellular accumulation of cytotoxic 
medications [120]. Cell proliferation is also decreased 
due to cell cycle arrest at the G0/G1 transition [119]. 
However, at present, significant controversies exist 
regarding the dynamics of COX-2 up-regulation in 
neuroendocrine neoplasms. In PNENs, COX-2 was 
more frequently found in the primary tumour than in 
the metastasis [3]. Cadden et al. [118] reported con-
trary findings. Considering the focality and heteroge-
neity of COX-2 expression in this and other studies 
[121], as well as the beneficial influence of COX-2 
inhibition on tumour chemosensitivity, COX-2 inhib-
itors would be useful only as part of complex therapy. 

Neuroendocrine markers

Neuroendocrine markers are the primary diagnos-
tic tools in PNENs. As both chromogranin A  and 
CD56 are invariably expressed in PNENs and islets, 
both markers can be equally used in PNEN diag-
nostics. Interestingly, despite the high level of chro-
mogranin A expression, the reactivity is still up-reg-
ulated in PNENs at a  statistically significant level 
(p = 0.042). The mechanisms of carcinogenesis can 
explain these changes, e.g., selective and function-
ally important up-regulation of chromogranin A by 
COX-2 [112].

Our report has some limitations, especially with 
the small size of the study group, despite enrolment of 
all PNENs within a 10-year long period. We restrict-
ed the time period to 10 years in order to avoid loss of 
immunohistochemical reactivity [122]. Appropriate 
methods of statistical analysis were selected [30]. The 
single-hospital approach ensured a  homogeneous 
study group. The strength of our study includes 
a simultaneous analysis of 20 immunohistochemical 
markers and 12 gross and microscopic parameters in 
the same study group using non-neoplastic islets for 
comparison. The integrated approach allowed us to 
reveal multiple significant morphologic and molec-
ular associations including the up-regulated triad of 
Ki-67, vimentin and CK19 as a tool to detect aggres-
sive behaviour of PNEN. Loss of E-cadherin can also 

be used in the complex with these markers. We also 
were able to show a link between tumour cell adhe-
sion, invasion and cell cycle regulation as disclosed 
by the associations between Ki-67, p21, p53, CK19 
and E-cadherin. The expression and role of p63 in 
PNENs has been reported for the first time.

Conclusions

Significant up-regulation of Ki-67, CK19, p63, 
chromogranin A, vimentin and COX-2 expression 
was found in PNENs in comparison with non-neo-
plastic pancreatic islets. 

In PNENs, proliferation activity (by Ki-67), 
E-cadherin, vimentin and CK19 are important mo-
lecular traits due to widespread associations with 
such important oncological parameters, like pTN-
MGR, tumour size and invasive growth. The triad 
of Ki-67, CK19 and vimentin up-regulation in asso-
ciation with E-cadherin loss can be used as a tool to 
identify aggressive behaviour in PNENs. 

CD44 expression shows limited associations, con-
trasting with the negative role in epithelial non-neu-
roendocrine neoplasms. 

The correlations between CK19 and Ki-67, as well 
as between E-cadherin and p21, provide evidence of 
the links between cell plasticity, adhesion and prolif-
eration. 

To the best of our knowledge, we reported p63 
expression in PNENs for the first time. The associ-
ations with p53 and E-cadherin suggest that p63 in 
PNENs has a tumorigenetic role, rather than serving 
as evidence of squamous differentiation.

PNENs retain the same microvascular density 
characteristic for islets. The microvascular densi-
ty shows a negative correlation with mitotic count, 
thus lower vascularity can be expected in high-grade 
NENs. MVD is associated with p53, cyclin D1, 
E-cadherin, p63 and CK19 molecular pathways. 

Notably, the correlations between the molecular 
features of PNENs and tumour grades using the 
2004 and 2010 WHO classifications differ remark-
ably.
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